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On the Propagation of Lüders
Bands in Steel Strips
The initiation and propagation of Lu¨ders-type localized deformation in thin, fine graine
steel strips in tension is studied through combined experimental and analytical ef
Purely elastic deformation is terminated (upper yield stress) by localized deforma
which tends to initiate along preferred directions. The strain level associated with
material instability is limited to two to five percent. When this strain level is achie
locally, the instability propagates via inclined fronts which separate coexisting region
essentially elastic and plastically deformed materials. Under displacement contr
stretching, one or two fronts propagate in a steady-state manner (lower yield stress)
propagation of one and two fronts are simulated numerically using finite element m
in which the material is modeled as a finitely deforming elastoplastic solid with
up-down-up nominal stress-strain response. The simulations capture the major e
observed in the experiments such as the initiation process, the propagation of inc
fronts, kinking of the strip and the build up of moments, and the periodic straighte
and moment reduction through transient events. This confirms that structural effects
a major role in the evolution of observed events.@S0021-8936~00!01604-4#
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1 Introduction
For several metals, the transition from elastic to plastic de

mation is characterized by a material instability known asLüders
strain. The macroscopic effect of the instability is inhomogeneo
deformation. Figure 1 shows a typical response recorded
uniaxial test on a low carbon steel, which is the best known
ample of this class of behavior. Localized plastic deformat
starts with a sudden drop in stress. Under displacement con
the deformation spreads along the length of the specimen w
the stress remains essentially constant. When the whole test
tion has been deformed to the Lu¨ders strain (DeL), the material
hardens and the specimen returns to homogeneous deforma
The initial stress peak~upper yield stresssU!, as well as the level
and extent of the stress plateau~lower yield stresssL andDeL ,
respectively! depend on the grain size~the finer the grain the
higher the values ofsU , sL , and DeL! and on alloy content.
They are also sensitive to temperature and to the rate of loa
~@1#!.

Two main theories of the microscopic events behind the in
bility have survived scientific scrutiny. Cottrell and Bilby@2# at-
tributed the upper yield stress to the pinning of dislocations
carbon and nitrogen atoms which naturally tend to form ‘‘atm
spheres’’ around them. They postulated that initial yielding
quires a higher stress in order to pull the dislocations out of th
atmospheres. Once released, the dislocations can be moved
lower stress. The pinning effect of interstitial impurities is wide
accepted for several reasons including the reappearance of Lu¨ders
strain following mild heat treatment which allows these atoms
migrate and repin the dislocations~strain aging!. The second
theory, due to Johnston and Gilman@3#, attributes the load drop to
multiplication of dislocations. As their number increases,
stress required to move them decreases. Indeed, simple con
ations of dislocation motion expanded upon in Hahn@4# showed
that an up-down-up stress-strain response like ones measur
LiF crystals could be derived from such a premise.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Apr. 18, 2000. Associate Technical Editor: L. T. Wheeler. Discussion
the paper should be addressed to the Technical Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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Shaw and Kyriakides@5,6#, in their studies of the evolution o
stress-induced transformations in nearly equiatomic NiTi wi
~@7#! and strips~@5,6#!, showed that for some temperature regim
austenite
 martensite transformations result in inhomogeneo
deformation. The microscopic reason for this behavior is tha
some stress level, the cubic lattice of austenite snaps to the m
clinic lattice of martensite and the reverse. Despite this fundam
tally different underlying mechanism from the dislocation go
erned Lüders strain, many macroscopic events observed in N
strips undergoing localized deformation by uniaxial tensi
matched those described in the literature for low carbon s
strips ~e.g., @1,8,9#!. These include the speed of the bands,
angle of their fronts, the in-plane kinking of the strips, the form
tion of stress valleys on the load plateau when two converg
fronts coalesce, etc. A proviso for these similarities is that b
materials have fine enough grains~;a few microns!.

Shaw and Kyriakides@6# concluded that macroscopic geometr
effects and the underlying mechanism of continuum strain loc
ization must play an important role in these common phenome
They modeled the loading part of the response of NiTi as a finit
deforming elastic-plastic solid with a trilinear up-down-up stre
strain response~see also@10#! and were able to reproduce th
evolution of events observed in isothermal tests on strips.

ics
on
eler,

04-
elfFig. 1 Typical force-elongation response of mild steel exhibit-
ing Lü ders-type deformation
000 by ASME DECEMBER 2000, Vol. 67 Õ 645
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In this paper, the subject is revisited but from the perspectiv
the Lüders phenomena in steel. The evolution of localized de
mation in strips is first examined in new experiments similar
those of Butler@9#. The phenomena are then simulated nume
cally using a model like that in Shaw and Kyriakides@6# cali-
brated to the properties of the steel tested.

2 Experiments
The experiments were conducted on thin strips machined f

plates of fine grained mild steel typical in pipeline applicatio
~grain size;100-120 gr/mm!. The strips were initially 6 in.~152
mm! long, 0.25 in.~6.4 mm! wide, and were ground finished to
thickness of 0.030 in.~0.76 mm!. A three-inch~76.2-mm! long ~L!
test section was machined to a width of 0.178 in.~4.52 mm! as
shown in Fig. 2~b!. The test section terminates into fillets at th
ends~r 50.067 in.—1.6 mm!. A thin layer~;0.003 in. —75mm!
of Stresscoatwas applied to one side of the strip using an a
brush. Stresscoat is a brittle, ceramic coating which shatters w
strained sufficiently. Shattering causes a change in the reflect
of the coating, and by illuminating the surface appropriately, ar
of localized deformation can be identified. The shattering strai
not known exactly, but its value is within the strain level of th
Lüders phenomenon of this steel. On the back surface, a s
gage was mounted axially at midlength.

The specimen was mounted in a standard uniaxial testing
chine using two solid grips, approximately 3.5 in. apart. The
periment was run at a constant crosshead displacement rate (ḋ) of
0.018 in./min which, for homogeneous deformation, correspo
to a strain rate ofė51024 s21. The strain gage strain, the cros
head displacement, and the load were monitored and reco
using a data acquisition system. The full length of the coated
of the test section was monitored with a video camera so that

Fig. 2 Results from uniaxial test on steel strip; „a… stress and
strain histories recorded, „b… x -t diagram of evolution of defor-
mation front
646 Õ Vol. 67, DECEMBER 2000
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evolution of the Lu¨ders bands could be later ascertained. The d
acquisition system and the video system were run on a com
time base so that the measured variables and the optical rec
ings could be matched during data processing.

Figure 2~a! shows the engineering stress~s! history recorded.
The stress rises to a local maximum at which localized deform
tion in the form of Lüders strain is initiated. It then maintains
relatively constant level around 70.6 ksi~487 MPa! during which
the Lüders bands propagate along the length of the specim
Approximately 277 s into the test the stress starts to monot
cally increase once more. The strain (eG) history seen by the
0.125 in. ~3.2 mm! gage is also shown in Fig. 2~a!. During the
initial loading before the stress peak, it records the induced ela
strain.~Note that the small nonlinearities in both the stress and
strain records before the stress peak are due to deformation o
gripped ends; when the stress is plotted against the local strain
response is linear with modulus of approximately 303103 ksi—
207 GPa!. At the onset of localized deformation, the strain at t
site of the gage remains unchanged until the deformation fr
reaches it. Att5166 s, the local strain experiences a jump
approximately 1.75 percent over a period of just over 13 s du
tion followed by a second strain plateau. The recorded strain
sumes its increasing trend at the termination of the stress plat

A sequence of 17 images from the video record, taken at t
intervals of 14 s are shown in Fig. 3. For improved clarity, t
images were enhanced using Adobe Photoshop by increasin
contrast between the shattered and intact parts of the stress
Light gray represents material that has experienced Lu¨ders strain
while the dark color represents relatively undeformed mater
Lüders strain first initiated on the left end of the test sect
where, despite the presence of fillets, some stress concentr
developed. This stress concentration also influences to some
tent the initial stress peak recorded. Thus, in such experiments
initiation stress is always a lower bound of the true value.

The Lüders strain propagates from left to right. An incline
front separates the Lu¨ders strained and unstrained regions. T
shattering of the Stresscoat did not result in very sharp fronts
other similar experiments, the deformation process was in
rupted with the front partially across the length of the strip whi
resulted in freezing the front. Measurements performed und
microscope confirmed the inclination to be in the neighborhood
the expected value of 55 deg to the axis of loading~a in Fig. 4!.
At the interface of the Lu¨ders deformed and undeformed materi
the strip kinked by approximately 1.2 deg in the fashion shown
Fig. 4 ~angleg!.

The position of the middle of each front was determined and
plotted in thex– t diagram in Fig. 2~b!. ~The last image is not
marked, instead the time of the stress valley at the end of
stress plateau is marked with a solid bullet—d!. The linear dis-
tribution of the points indicates that the front propagated a
nearly constant velocity. Included with a solid line is the fro
velocity based on the expression postulated by Butler@9# and
Shaw and Kyriakides@7#

c5
ḋ

nDeL
(1)

whereḋ is the displacement rate applied to the end of the strip
DeL is the Lüders strain~extent of stress plateau taken to be 2.
percent! andn is the number of fronts~n51 here!. The data is in
very good agreement with this construction.

Included in thex– t diagram are the positions of the start an
termination of the passage of the Lu¨ders band through the strai
gage. The two data points are again in good agreement with
construction line and the photographic data. The strain gage si
also indicates that additional deformation of approximately 0
percent takes place after the main Lu¨ders strain front passes by
This was found to be repeatable in other experiments perform
If the width of the active front isw, then the average strain rat
Transactions of the ASME
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Fig. 3 Photographic sequence of the evolution of Lu ¨ders strain „shown at 14 s
intervals …
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Fig. 4 Definition of geometric variables of inclined Lu ¨ders

band
hanics
inside it is ė5 ḋ/w. Guided by observations of others~e.g.,@11#!,
we suggest that the front width is only a few grains wide and,
a result, the strain rate inside it is rather high. It seems that s
dislocations unable to move at the high strain rate continue
move at a slower velocity after the front has passed them.

We point out that in such experiments, two propagating fron
usually emanating from the ends, are more common than
single propagating front of this experiment. For example, t
such fronts are shown in the photograph in Fig. 5 taken fr
another experiment~see also Figs. 1 and 2 in@9#!. Both fronts
usually emanate from the ends of the specimen and propa
towards each other at half the present speed of the single fron
the same time, the moment that builds up in the specimen du
Fig. 5 Photograph of two coexisting Lu ¨ders fronts propagating towards each
other
DECEMBER 2000, Vol. 67 Õ 647
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Fig. 6 Geometry and mesh of model strips for „a… single Lü ders front propagation and „b… two-
band propagation
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kinking is reduced. The strip in the test in Fig. 2 had a small ta
in its width which in conjunction with small geometric difference
in the fillets machined at the two ends, increased the stress
centration at the left end.

3 Analysis
The evolution of localized Lu¨ders strain in steel strips wa

simulated using finite element models similar to those of Sh
and Kyriakides@6#. The length~L!, the width~a!, and thickness~t!
of the strip were the same as in the experiments~L5100t, a
56t; see Fig. 6!. The steel was modeled as a finitely deformi
J2-type, elastic-plastic solid with a nonmonotonic engineer
stress-strain response drawn with a dashed line in Fig. 7~a! ~the
true stress-logarithmic strain version of this is used in the an
sis!. Although the phenomenon is known to be influenced by r

Fig. 7 Simulation of single Lu ¨ders front propagation; „a…
stress-displacement response and „b… moment-displacement
response
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effects~@1#!, in this first attempt at the problem a rate independ
model is adopted. The initial elastic modulus and the slope of
positive modulus section following the linear sector with negat
slope match the corresponding experimental parts. The leve
the upper yield stress was found in the past to affect the stab
of the localized deformation patterns that develop. In all our
periments, the value ofsU was masked to some degree by stre
concentrations at the fillets which could not easily be avoided.
chosesU579 ksi ~545 MPa! as a reasonable estimate of the tr
value. The Maxwell stress of this construction was selected
correspond to the plateau stress in Fig. 2. The extent of the M
well stress was selected to match the experimental value. In a
tion, in order to make the events somewhat sharper, the leve
the stress knee in the second rising part of the response wa
creased by 8 ksi~55 MPa! from the experimental value.

The strips were discretized with three-dimensional 20-no
~quadratic!, isoparametric, reduced integration, brick elements
ing ABAQUS. The elements had a one-to-one aspect ratio in
x–y plane. This ‘‘isotropic’’ mesh was adopted to avoid introdu
ing any preferred directions into the results. The midplanez
50) was assumed to be a plane of symmetry and the half th
ness was represented by a single element. The density of the
in the x–y plane was patterned after Shaw@5#, such that all rel-
evant features of the strain fields were represented without bec
ing computationally prohibitive.

Two cases will be simulated: The first involves the propagat
of a single front and the second the simultaneous propagatio
two fronts. Unlike the experiments, the model width was unifo
and free of clamping forces. The instability was initiated close
the ends by introducing geometric imperfections in the form
small indentations along one side of the strips~denoted by ‘‘,’’
in Fig. 6!. A single indentation was introduced in the first case a
two in the second~via the antisymmetry assumed aboutx50!.
The indentations were symmetric about their middle, with an
ponentially decaying amplitude along their length. This type
imperfection allowed the localization to initiate without any ar
ficial directional bias across the width.

„a… Propagation of a Single Lüders Front. For this case,
two mesh densities were adopted for computational efficiency.
the right half (L/2<x<L) the density was 20 elements across t
width and in the left half (0<x<L/2) it was 10. The imperfection
was 3.33t wide and 0.33t deep. The following boundary condi
tions were applied to the ends of the strip:

u~0,y,z!50, v~0,0,z!50 and

u~L,y,z!5d, v~L,0,z!50. (2)
Transactions of the ASME
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Fig. 8 Sequence of black-white deformed configurations corresponding to responses in Fig.
7. White depicts zones with axial strain higher than 1.2 percent and black depicts zones lower
than 1.2 percent.
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For most of the loading history, the strip was loaded increment
by prescribingd. In places where the stress undergoes sud
changes in direction, Riks’ path following scheme was adop
instead for easier convergence. The results are shown in F
7–9. Figure 7~a! shows the calculateds–d response. Its genera
features are similar to what is seen experimentally. It consist
an initial linear part which terminates into a sharp limit load
75.5 ksi ~512 MPa! at which the instability in the form of local-
ized deformation is initiated. The value of the initiation stress
governed by the size of the imperfection used. The load exp
ences a sharp drop down to a local stress valley of 69.4 ksi~479
MPa!. ~A small load valley can also be seen in the experimen
response in Fig. 1.! Tracing these sharp changes in the respo
required use of Riks’ method. Beyond the first stress valley,
end deflectiond was prescribed. The response follows a relativ
flat plateau with an average stress of 72.2 ksi~498 MPa!. Some
ied Mechanics
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detailed features of the stress plateau will be discussed below.
response terminates into a stress valley of 67.8 ksi~468 MPa! and
subsequently the stress increases monotonically.

A sequence of 21 deformed configurations of the strip is sho
in Fig. 8. They correspond to the points marked on thes-d re-
sponse in Fig. 7~a! with solid dots. The three numbered dots co
respond to the configurations with the same numbers in Fig. 8.
clarity, we have chosen to depict regions with surface str
higher than 1.2 percent in white and regions at lower strain lev
in black. This cutoff level of strain is a bit less than 50 percent
the Lüders strain. Other cutoff strains closer to the Lu¨ders strain
level were also considered but the main features of interest did
change.~Note that the shattering strain of Stresscoat in the exp
ments is not known but is somewhere within the Lu¨ders strain
range.! The instability initiates via two narrow fingers which em
nate from the imperfection and cross the width of the specime
DECEMBER 2000, Vol. 67 Õ 649
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Fig. 9 Lateral displacement of axis of strip as a function of d for simulation in Figs. 7 and 8

Fig. 10 Expanded deformed configurations in gray scale showing one of the
transient events
50 Õ Vol. 67, DECEMBER 2000 Transactions of the ASME
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Fig. 11 Gray scale plot of configuration 21 showing islands of uneven deformation left by five transient events
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shown in configuration1 in Fig. 8. The two fingers are along th
two characteristics of Hill@12# ~see also@13#! oriented at approxi-
mately 655 deg to the axis of loading. The local deformatio
quickly reaches the Lu¨ders strain. When this is achieved, furth
deformation in these zones requires additional stress. T
spreading of the instability along the length of the strip becom
energetically preferred.

The localized deformation propagates through a front alig
approximately to one of the characteristics. The width of the fr
is of the order of one to two elements. As the material inside
front deforms to the Lu¨ders strain, it provides the stress ris
necessary to initiate deformation in the intact material adjacen
it. The stress riser required is the difference between the
stress peak of the locals–« response and the current stress. T
elements in the path of the front deform one, or a few, at a tim
the Lüders strain. This produces small stress fluctuations just
cernable in Fig. 7~a!. The stress fluctuations double in size wh
the Lüders front propagates in the left half of the strip with t
coarser mesh.

The steel used in the experiments had grains of the order o
mm in diameter. Thus, there were approximately 450 grains ac
the width and 75 through the thickness of the strip. The ac
Lüders front is a few grains wide~@11#!. In the model, the elemen
size represents the main characteristic microstructural len
Since we have a maximum of 20 elements across the strip w
the calculated front width is larger than the actual one. Des
this difference, the main features of the evolution of deformat
are very similar to those seen in the experiments. This is bec
many of the features are due primarily to structural effects
less dependent on the microstructure.

The two bands are seen to initially broaden simultaneously a
in the process, two islands of relatively undeformed material
formed on the right of the strip~see 2 !. The induced deformation
has a significant shear component which kinks the strip in thex–y
plane. Kinking was also observed in the experiments and has
been reported in the past~Lomer, @8#; Hall, @1#; Shaw & Kyriak-
ides,@5#!. As in Shaw and Kyriakides@6#, we quantify the extent
of kinking by plotting in Fig. 9 the transverse displacement of t
axis of the strip~v(x), 0<x<L! for each of the 21 configuration
in Fig. 8 ~due to the relief of the plot, views from two direction
are provided!. Because of the kink, the islands of relatively und
formed material, and the boundary conditions at the ends, a
ment builds up in the strip. The moment at the end of the st
M (L), normalized by the yield moment (Mo) is plotted as a func-
tion of the applied end-displacement in Fig. 7~b!. In configura-
tions 1 to 4 , the left front propagates down the strip while th
islands of undeformed material on the right end remain relativ
unchanged. In configuration4 , the kink angle~g in Fig. 4! has
grown to 1 deg. A positive moment builds up which is reliev
al of Applied Mechanics
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when the islands start to deform just after configuration4 . As
this is taking place, the front on the left reverts to the more sy
metric v-shape reported in the experiments of Shaw and Kyr
ides@5# which temporarily removes the kink. Some fluctuations
stress are recorded while these transient events take place. I
dition, some regions of slightly more deformed material are l
behind which influence the moment in the strip. Between confi
rations 7 and 11 , a single inclined front propagates towards t
left. The kink has reappeared and positive moment builds up o
more. Just after configuration11 , the moment can no longer b
sustained and one more transient event takes place.

This event is shown in some detail in Fig. 10 where 12 e
panded views of the front are plotted in gray scale. They co
spond to events which occurred between configurations11 and
13 in Figs. 7–9. In configurations1 to 3 , the front is inclined
and the moment is rising. Configurations4 to 9 show the tran-
sient switch to the v-shaped front which occurred with a drop
stress of 1.34 ksi~9.26 MPa! and a drop in moment of 0.048Mo .

Fig. 12 Simulation of propagation of two Lu ¨ders fronts; „a…
stress-displacement response and „b… moment-displacement
response
DECEMBER 2000, Vol. 67 Õ 651
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Fig. 13 Sequence of black-white deformed configurations corresponding to responses in
Fig. 12. White depicts zones with axial strain higher than 1.2 percent and black depicts zones
lower than 1.2 percent.
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The finger-like deformation features associated with the v-fr
leave behind small islands of relatively undeformed material.
configuration12 , the transient is over and the front returns to t
single inclination once more. Left behind are one small island
not totally deformed material and one island of somewhat m
deformed material. The two islands are sources of stress non
formity which tends to reduce the moment. The transient ha
permanent straightening effect on the strip seen in the plots o
axis transverse deflections in Fig. 9 for all configurations follo
ing 11 .

The band propagates essentially in a steady-state manner
configuration 17 when another transient event takes place~see
Fig. 8!. A final transient event takes place when the left end of
strip starts to deform. The stress valley at the end of the st
plateau in Fig. 7~a! ~67.8 ksi—468 MPa! corresponds to the de
ECEMBER 2000
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formation of the last bit of material. Riks’ path following schem
had to be applied again in order to capture this stress valley. S
stress valleys at the termination of the unstable regime are usu
present in experiments~see Figs. 1 and 2~a!!. Under continued
stretching, the strip deforms uniformly and the stress grows mo
tonically once more.

It is instructive to see on gray scale the deformation of the s
at the end of the stress plateau~configuration 21 !. In Fig. 11, we
see remnants of five transient events that took place during
propagation of the Lu¨ders deformation. Each produced islands
slightly more deformed material as well as islands of slightly le
deformed material. These islands tend to have a straightening
fect on the strip and are sources of stress nonuniformity. Eac
the events can also be traced on the transverse deflection ma
Fig. 9.
Transactions of the ASME
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Some transient events like the ones described above have
observed in the experiments. They were difficult to capture w
clarity due to the poor resolution provided by the visualizati
scheme used. Load fluctuations, which probably correspon
such transients, can also be seen in Fig. 2~a!. However, as stated
earlier, the 79 ksi~545 MPa! initiation stress adopted was chose
somewhat arbitrarily and is probably too low. We expect an
crease of this variable to reduce the number of transients ev
seen in the simulation.

„b… Propagation of Two Lüders Fronts. Next we consider
the case of two coexisting Lu¨ders fronts emanating from the end
and propagating towards the middle of the specimen. In this c
antisymmetry of deformation about the mid-length applies. H
of the length is then modeled as shown in Fig. 6~b! with the
following boundary conditions at the plane of antisymmetry:

u~0,0,z!5v~0,0,z!50, u~0,y,z!52u~0,2y,z!,
(3a)

v~0,y,z!52v~0,2y,z! w~0,y,z!5w~0,2y,z!.

The following boundary conditions are applied to the end of
strip:

uS L

2
,y,zD5

d

2
, vS L

2
,0,zD50. (3b)

The domain was modeled with square elements with a mesh
sisting of 20 elements across the width. For most of the load
history, d is prescribed incrementally. The results are shown
Figs. 12–14. The main features of the stress-displacemen
sponse shown in Fig. 12~a! are similar to those in Fig. 7~a! but the
deformation patterns are different. The instability is initiated w
an imperfection with smaller depth (0.033t) at a somewhat highe
stress~78.5 ksi—541MPa!. The initial stress drop is milder an
can be traced by displacement control. Again two fingers of
formed material oriented along the two characteristics ema
from the imperfection~Fig. 13! and a stress valley develops dow
to 70.6 ksi ~487 MPa, see Fig. 12~a!. Initially, the two bands
broaden together but by configuration2 deformation is limited
to the inner fronts which propagate towards the middle of
strip. The strip kinks as shown in Fig. 14 and a moment start
build up. In the neighborhood of configuration6 , the stress non-
uniformity forces the islands of undeformed material to defo
into a more symmetric pattern seen in8 and in the process the
moment is reduced. From configuration9 onwards, the two
middle fronts propagate towards each other eventually coales
just before configuration20 . The coalescence causes the stres
drop down to 67.5 ksi~466 MPa! as the two fronts interact. Trac
ing of this stress valley required temporary use of Riks’ meth
The islands of undeformed material at the ends deform last
subsequently the strip returns to homogeneous deformation.

Fig. 14 Lateral displacement of axis of strip as a function of d
for simulation in Figs. 12 and 13
Journal of Applied Mechanics
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Overall, the two fronts keep the moment in the strip at a low
level and, as a result, events such as those seen in the pre
case do not take place. Thus, a much flatter stress plateau is t
between the initiation of localized deformation and the coal
cence of the two fronts in the middle of the strip.

4 Summary and Conclusions
The phenomenon of propagation of Lu¨ders bands in mild stee

is perhaps the oldest example of a propagating instability du
micromechanical causes~see Kyriakides@14# for related phenom-
ena at the structural level!. In thin strips, the Lu¨ders deformation
tends to initiate along preferred directions~characteristics! from
small stress concentrations often present at the ends of the s
mens. Lüders deformation spreads by the propagation of inclin
fronts which separate coexisting regions of relatively undeform
material and material deformed to the Lu¨ders strain. For fine
grained steels, the fronts tend to be well defined and sharp
under relatively slow displacement controlled stretching, th
propagate in a steady-state manner. In the present experim
study, the surface of the strips was coated with a brittle coat
The coating shatters at a level within the Lu¨ders strain and this
enables monitoring of the evolution of the fronts along the str
In most experiments, from the present study and from the lite
ture, either one or two propagating Lu¨ders fronts developed. The
velocity of propagation of the fronts is captured well by the kin
matical condition given in Eq.~1!.

The Lüders phenomena in thin steel strips were modeled w
suitably nonlinear finite elements with a relatively fine and isot
pic mesh. The material was modeled as a finitely deform
J2-type elastic-plastic solid. A key aspect of the constituti
model is the adoption of a trilinear up-down-up stress-strain
sponse termed the local stress-strain response. It was chos
have a Maxwell stress which corresponds to the plateau st
measured experimentally and extending to the experiment
measured strain level. The upper yield stress of the steel is ra
difficult to accurately determine experimentally as it is masked
ever present stress concentrations. Furthermore, it is rather s
tive to the rate of loading. Thus, the choice of the differen
between the initial stress peak and the stress valley of the trilin
stress-strain response was somewhat arbitrary.

The model strips had the same dimensions as the strips te
but they had a uniform cross section. In addition, the bound
conditions used at the ends did not produce stress concentrat
Lüders deformation was initiated from small initial geometric im
perfections at the ends of the strips. In the first case, only
initiation site was provided and in the second two at opposite e
of the strip. Two finger-like deformation features emanated fr
the imperfections inclined at655 deg to the axis of loading. The
net stress dropped sharply and a local stress valley formed a
the experiments. The propagation of the single front was foun
be sustainable. The shear deformation associated with the inc
front tends to kink the strip and a moment builds up. For a sin
propagating front, the asymmetry was more pronounced and
moments developed were of larger amplitude. Because of the
tively low difference between the assumed upper yield stress
the plateau stress, the moment caused periodic transient e
during which the front tended to propagate with a more symme
v-shape. This, and islands of nonuniformly deformed material
behind, tended to straighten the strip and relieve the mom
Several such transient events took place while, between them
front propagated at a relatively constant inclination along one
the characteristics.

The propagation of two fronts antisymmetrically oriented w
found to be less eventful. The initiation is similar but stead
steady propagation was more sustainable because the antisy
try kept the kinked strip straighter and the moments at a m
lower level. The stress plateau was flatter until the end when
two fronts coalesced in the middle of the strip producing a str
valley like ones seen in experiments.
DECEMBER 2000, Vol. 67 Õ 653
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The width of the propagating front depends on the mesh
and as a result we suspect it to be wider than the actual ones in
fine grained steel strips. This difference did not seem to af
most other events which were more affected by structural effe
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Common Errors on Mapping of
Nonelliptic Curves in Anisotropic
Elasticity
For an isotropic elastic material under a two-dimensional plane-stress or plane-st
deformation that involves a closed boundary of a given geometryΓ, it is a common
practice to use a conformal mapping to mapΓ to a circle of unit radius. For an aniso-
tropic elastic material, the mapping produces the correct solution to the physical prob
whenΓ is an ellipse. There are published (and unpublished) papers that report solu
to anisotropic elasticity problems with a nonelliptic curveΓ. They all fail to solve the
physical problem correctly. The purpose of this paper is to show the common errors
by many researchers, and to alert newcomers on the subject so that they do not fa
the same trap.@S0021-8936~00!02403-X#
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1 Introduction
Consider an infinite isotropic elastic material under a tw

dimensional plane-stress or plane-strain deformation. The mat
has a hole of given geometryG. The boundary conditions ar
prescribed onG and at infinity. The solution for the displaceme
and stress can be expressed in terms of the complex variablez and
its complex conjugatez̄ where

z5x11 ix2 . (1)

It is a common practice to transform the curveG to a circle of unit
radius by a conformal mapping

z5w~z!. (2)

The functionw(z) is chosen such that, whenz is onG, z is on the
unit circle. It is important that the mapping be reversible a
single-valued. Every point outsideG in the z-plane is mapped to
only one point in the region outside the unit circle in thez-plane,
and vice versa. In other words, the mapping must be ‘‘one
one.’’ This condition is satisfied if~@1#!

d

dz
w~z!Þ0 for uzu.1. (3)

For an anisotropic elastic material under a two-dimensional
formation the solution can be expressed in terms of three com
variables~@2,3#!

za5x11pax2 ~a51,2,3! (4)

and their complex conjugatesz̄a . The complex constantspa (a
51,2,3) depend on elastic constants only. The imaginary par
pa is positive and nonzero.pa5 i (a51,2,3) for isotropic mate-
rials. To map the curveG to a unit circle we need three mappin
functions

za5wa~za! ~a51,2,3!. (5)

Two important conditions must be met before one starts to so
the boundary value problem.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
10, 1999; final revision, Dec. 15, 1999. Associate Technical Editor: W. J. Drug
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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~i! Each point onG in the (x1 ,x2)-plane is mapped to thesame
point on the unit circle in theza-plane for all three mapping
functionswa(za).

~ii ! The mapping is one-to-one between the region outsidG
and the region outside the unit circle for eachwa(za). This is
assured if

d

dza
wa~za!Þ0 for uzau.1 ~a51,2,3!. (6)

All published ~and unpublished! papers on nonellipticG that
this author has read fail to meet the condition~i! or ~ii !. When the
condition ~i! is violated, the boundary condition onG cannot be
satisfied for all points onG because each point is mapped to thr
different points on the unit circle in theza-plane fora51,2,3. If
the condition~ii ! is violated, a Riemann surface with a branch c
must be introduced in the (x1 ,x2)-plane so that the mapping i
one to one. The solution so obtained does not represent the o
nal physical problem because the region outsideG has a branch
cut, and is no longer a continuous medium.

It is unfortunate that a few incorrect papers on nonellipticG that
have appeared in print have induced countless number of un
lished papers to fall into the same trap. What is particularly s
for the authors of these unpublished papers on nonellipticG is that
they have spent so much of their time in solving the bound
value problems, not knowing that they have made a fundame
error on mapping at the very beginning of their papers. It is hop
that this paper would prevent newcomers on the subject fr
falling into the same trap.

We will elaborate on conditions~i! and ~ii ! separately below.

2 The Mapping for Anisotropic Elasticity
Equation~2! for isotropic elastic material can be approximat

by a polynomial of the form~@1#!

z5w~z!5c0z1
c1

z
1

c2

z2 1 . . . 1
ck

zk (7)

wherec0 , c1 , c2 , . . . are constants andk is a positive integer.
We have deleted a constant term in~7! that does not affect the
general results. The following are some of the special ca
~@1,4#!.

Ellipse: w~z!5
a1b

2
z1

a2b

2z
, (8)

Triangle: w~z!5aH z1
1

3z2 1
1

45z52 . . . J , (9)
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Square: w~z!5aH z2
1

6z3 1
1

56z72 . . . J , (10)

Pentagon: w~z!5aH z1
1

10z4 1
1

75z92 . . . J , (11)

wherea>b are constants.
For an anisotropic elastic material we may first map

(x1 ,x2)-plane to the (x1
a ,x2

a)-plane by

za5x1
a1 ix2

a5x11pax25x11pa8x21 ipa9x2 ~a51,2,3!, (12)

wherepa8 andpa9.0 are the real and imaginary parts ofpa . This
transformation can be seen as stretching the (x1 ,x2)-plane uni-
formly in the x2-direction with the stretch ratiopa9 and, if pa8
Þ0, shearing the (x1 ,x2)-plane with thex1-axis being held fixed
~@5#, p. 73!. The curveG maps to a curveGa in theza-plane. IfG
is a squareGa is a parallelogram. IfG is a circleGa is an ellipse.
If G is an ellipseGa is an ellipse of different shape. The mappin
in this step is one to one, butnot conformal~see Section 4!. The
second step is to map the curvesGa to a unit circle in theza-plane
by a conformal mapping. It should be noted that the curvesGa for
a51,2,3 are different curves unlessp15p25p3 . Therefore this
two-step mapping maps each point onG to threedifferent points
on the unit circle in theza-plane fora51,2,3. This violates con-
dition ~i!.

To map each point onG to thesamepoint on the unit circle in
the za-plane fora51,2,3, many papers make use of the mapp
~2! that is valid for isotropic elastic materials. By writing~2! and
its complex conjugate as

x11 ix25w~z!, x12 ix25w̄~ z̄ !, (13)

they can be solved forx1 andx2 , andza can be written as

za5x11pax25
12 ipa

2
w~z!1

11 ipa

2
w̄~ z̄ !. (14)

Sincez̄5z21 on the unit circle,~14! is replaced by

za5x11pax25
12 ipa

2
w~z!1

11 ipa

2
w̄~z21!. (15)

Equation~15! maps each point onG to the same point on the un
circle for a51,2,3. Therefore it satisfies condition~i!.

Unfortunately, as we will show in the next section, the mapp
~15! is no longer one to one for the region outsideG unlessG is an
ellipse. The error was made whenz̄ in ~14! was replaced byz21

to obtain~15!. This is the crucial error made by most papers. It
also an error easily missed by most reviewers.

3 The Mapping „15… is Not One to One for Nonelliptic
G

If we take the first two terms in~8!–~11!, substitute them into
~15! and writez asza , we have

Ellipse: za5wa~za!5
a2 ipab

2
za1

a1 ipab

2za
, (16)

Triangle: za5wa~za!5
a

2 H ~12 ipa!S za1
1

3za
2 D

1~11 ipa!S 1

za
1

za
2

3 D J , (17)

Square: za5wa~za!5
a

2 H ~12 ipa!S za2
1

6za
3 D

1~11 ipa!S 1
2

za
3 D J , (18)
za 6
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Pentagon: za5wa~za!5
a

2 H ~12 ipa!S za1
1

10za
4 D

1~11 ipa!S 1

za
1

za
4

10D J . (19)

Equation~16! is the mapping of an ellipse for anisotropic elas
materials first employed by Lekhnitskii@2,6#. It is the only one
that is in the form of~7!. It can be shown that~16! satisfies~6!
~@5#, p. 85!. Hence the mapping~16! is one to one. Equation~17!
has theza

2 term while ~18! and ~19! have theza
3 and za

4 terms.
These terms do not appear in~7!. Of course, these terms disappe
when pa5 i (a51,2,3), which is the case when the material
isotropic. There are anisotropic elastic materials for whichpa
5 i (a51,2,3). We will discuss these materials in Section 5. It
easy to see that the mapping~17! is not one to one. Whenuzau is
very large~17! can be approximated by

za5wa~za!5a~11 ipa!
za

2

3
. (20)

The mapping is not one to one because, when we go around
origin of theza-plane one full circle, we will be going around th
origin of the (x1 ,x2)-plane two full circles. For the mapping to b
one to one we have to introduce a branch cut in the (x1 ,x2)-plane.

As an illustration letpa5
3
5 i anda51 so that~17! is

x11 i
3

5
x25wa~za!5

1

5 H 4S za1
1

3za
2 D 1S 1

za
1

za
2

3 D J . (21)

Figure 1 shows the mapping between the (x1 ,x2)-plane and the
za-plane. A branch cutk in the (x1 ,x2)-plane is introduced so tha
the mapping is one to one. The branch cutk is mapped to the
curve kz in the za-plane. Thebranch pointsfor kz and k are
computed from~6! ~with the Þ replaced by5! and ~21! as

Fig. 1 A triangle in the „x 1 ,x 2…-plane is mapped to a circle in
the za-plane through Eq. „21…
Transactions of the ASME
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za525.98, za522.43. (22)

The curvekz is practically a straight vertical line withza526 as
its asymptotic line. Theinfinite region in the (x1 ,x2)-plane out-
side the triangle is mapped to thesemi-infinite region in the
za-plane outside the unit circle. The region to the left ofkz is
excluded. This mapping creates two problems. First, due to
presence of the branch cutk, the region outside the triangle in th
(x1 ,x2)-plane is no longer a continuous medium. Secondly,
boundary conditions prescribed at infinity in the (x1 ,x2)-plane do
not correspond to the boundary conditions at thewhole infinity in
the za-plane because the region in theza-plane is a semi-infinite
region. Any one of the two problems invalidates the analysis.

Likewise, one can show that the mappings~18! and~19! are not
one to one. They create the same problems as the mapping~17!
does.

4 The Mapping for Anisotropic Elastic Material is Not
Conformal

For an isotropic elastic material the mappings~8!–~11! arecon-
formal because the angle between any two infinitesimal lines
intersect at a point in the (x1 ,x2)-plane and the angle between th
two corresponding lines in thez-plane are identical. Moreover, th
senseof the angle is preserved. A mapping that preserves
magnitudes of the angles but not necessarily the sense is c
isogonal~@7#!.

For an anisotropic elastic material for whichpaÞ i the angle
between any two infinitesimal lines that intersect at a point in
(x1 ,x2)-plane and the angle between the two corresponding l
in the za-plane are in general different. Therefore the mapping
not conformal,nor isogonal. This is irrespective of whether th
mapping function satisfies condition~i! or ~ii !. The mappings
~16!–~19! are all nonconformal, even though~16! satisfies condi-
tions ~i! and ~ii !. Most papers that dealt with mapping for anis
tropic elastic materials used the word conformal mapping ind
criminately. A nonconformal mapping poses no problems
anisotropic elasticity. It is completely irrelevant in finding a co
rect solution. Nevertheless, the term conformal mapping does
apply to anisotropic elasticity.

5 Concluding Remarks
We have shown that, for an anisotropic elastic material wit

hole of given geometryG under a two-dimensional deformation,
mapping ofG to a unit circle does not provide a correct solution
the physical problem unlessG is an ellipse. Lekhnitskii@2,6# was
the first one to solve the anisotropic elasticity problems with
elliptic hole. He did consider nonelliptic holes. However, he a
sumed that the hole was asmall perturbation of an ellipse, or the
material was asmall perturbation from isotropic elastic materia
That was as far as he could go. Had he known how to solve
problem for a nonelliptic hole, he would have done it a long tim
ago.

This doesnot mean that the problem cannot be solved forany
anisotropic elastic material when it has a nonelliptic hole. Th
are degenerateanisotropic elastic materials for whichpa5 i for
Journal of Applied Mechanics
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a51,2,3~@8#!. There are also degenerate anisotropic elastic m
rials for which paÞ i , but p15p25p3 ~@9–11#!. These materials
are degenerate in the mathematical sense, not necessarily i
physical sense. They need not be a small perturbation from
isotropic elastic material. They can betriclinic , i.e., they may not
possess a plane of material symmetry. For these degenerate
rials conditions~i! and ~ii ! can be easily satisfied. Therefore,
correct solution to the physical problem can be obtained fo
nonelliptic hole for these materials. Recently, Ting@12# has
shown that there are anisotropic elastic materials that unco
antiplane and in-plane displacements but not antiplane and
plane stresses, and vice versa. Monoclinic material with the s
metry plane atx350 is a special case that uncouples both d
placements and stresses. For these materials, if the solu
depends onp3 alone or if the solution depends onp1 andp2 with
p15p2 , a correct solution for a nonelliptic hole can be obtaine

There are papers on nonellipticG that provide an approximate
solution with a small parameter«. The exact solution to the prob
lem is obtained when«→0. This is certainly acceptable excep
that, for these papers, the geometry ofG reduces to an ellipse
when «→0. Thus the problem is equivalent to that of a sm
perturbation from an ellipse considered by Lekhnitskii@2,6#. An
approximate solution for a nonellipticG is justified if, in the limit
when the approximate solution becomes the exact solution,
geometry ofG remains nonelliptic. The question is open if a
exact solution or an approximate solution in the sense mentio
above~other than a complete numerical solution! for a nonelliptic
G can be obtained for a general anisotropic elastic material. It
challenging problem for the new millennium.
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On the Interior Stress Problem
for Elastic Bodies
The classic Sherman-Lauricella integral equation and an integral equation due
Muskhelishvili for the interior stress problem are modified. The modified formulat
differ from the classic ones in several respects: Both modifications are based on un
ness conditions with clear physical interpretations and, more importantly, they do
require the arbitrary placement of a point inside the computational domain. Furtherm
in the modified Muskhelishvili equation the unknown quantity, which is solved fo
simply related to the stress. In Muskhelishvili’s original formulation the unknown quan
is related to the displacement. Numerical examples demonstrate the greater stabi
the modified schemes.@S0021-8936~00!01304-0#
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1 Introduction
The task of computing the elastic field inside an unconstrai

body subjected to external stress is a basic one in applied mec
ics. A variety of numerical methods exist, leading to the solut
of systems of linear equations. Finite element methods and i
gral equation methods are two examples. A problem, for
method, is a certain undeterminacy in the solution—when stre
applied, displacement is not unique.

There are standard ways to get a well-posed problem. In a fi
element program one can prescribe also the displacement at
points ~to prevent rigid-body movements!. In the context of inte-
gral equations, the integral operator can be completed with
extra operator, containing another arbitrary point, which ma
the solution unique. The choice of particular representations of
unknown fields and placements of arbitrary points will, of cour
affect the stability of a numerical code. With a direct solver a
for simple problems this may not be an issue. The computatio
work only depends on the size of the system matrix. With
faster iterative solvers used by many engineers today and in
ficult situations, the stability of the code and the condition num
of the system matrix is suddenly important. The lower the con
tion number, the faster the solver will converge. A stable al
rithm can give a solution with better quality.

This paper focuses on the Sherman-Lauricella integral equa
and an integral equation due to Muskhelishvili for the inter
stress problem in two-dimensional elastostatics. The classic
to get a unique solution for these equations is to complete th
with an operatorB containing an arbitrary pointz* ~@1#!. We
show that the convergence properties of iterative algorithms ba
on these equations can be sensitive to the placement ofz* . To
remedy this situation, we introduce a uniqueness condition wi
clear physical interpretation. This leads us to a new operatoB
which is free from the arbitrary pointz* . We then derive a modi-
fication of the Muskhelishvili equation which is better suited
compute stress fields. Numerical experiments indicate that
modified equations give more efficient algorithms.

2 Potential Representation
A finite, linearly elastic body occupies a domainD. Its two-

dimensional elastic bulk and shear moduli arek and m. The
boundary of the body is denotedGand is given positive~counter-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
2, 1999; final revision, May 10, 2000. Associate Technical Editor: J. R. Bar
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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clockwise! orientation. Traction is prescribed atG. We would like
to compute the deformation and the stress field insideD.

Let U denote the Airy stress function. SinceU satisfies the
biharmonic equation insideD it can be represented as

U5Re$z̄f1x%, (1)

where the potentialsf andx are single-valued analytic function
of the complex variablez5x1 iy . For a thorough discussion o
the complex variable approach to elasticity problems, see~@2–5#!.
For our purposes it is sufficient to observe a few relations that
the complex potentials to quantities of physical interest: The d
placement (ux ,uy) in the material satisfies

ux1 iuy5S 1

2m
1

1

k Df2
1

2m
~zf̄81c̄ !, (2)

wherec5x8. The integral of traction (tx ,ty) along a curveg(s)
can be obtained from the relation

E
s0

s

~ tx1 i t y!ds52U
s0

s

i ~f1zf̄81c̄ !, (3)

wheres denotes arclength alongg(s). Complex differentiation of
the expression~2! along the tangent toG(s) gives

d

dz
~ux1 iuy!5S 1

2m
1

1

k DF2
1

2m S F̄2
n̄

n
zF82

n̄

n
C̄ D , (4)

and differentiation with respect to arclength in~3! gives

tx1 i t y5Fn1F̄n2zF8n̄2C̄n̄, (5)

whereF5f8, C5x9, andn5nx1 iny is the outward unit nor-
mal vector onG. The components of the stress tensor can
computed via

sxx1syy54 Re$F%, (6)

syy2sxx12isxy52~ z̄F81C!. (7)

A natural starting point for elastostatic problems is to repres
the potentialsf andc, or F andC, in the form of Cauchy-type
integrals

f~z!5
1

2p i EG

v~t!dt

~t2z!
, zPD, (8)

and

c~z!5
1

2p i EG

r~t!dt

~t2z!
, zPD, (9)

or
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li-
2000 by ASME Transactions of the ASME



i

t

a

l

en
m,

he

e.

r is

u-

por-
F~z!5
1

2p i EG

V~t!dt

~t2z!
, zPD, (10)

and

C~z!5
1

2p i EG

J~t!dt

~t2z!
, zPD, (11)

wherev and r, or V and J, are unknown layer densities onG.
Values of the potentialsf, c, F, andC on G are defined as limits
of f, c, F, andC in D asG is approached. Since the equations
elasticity now are satisfied everywhere, it remains only to so
the problem which consists of enforcing the boundary condit
of prescribed traction (tx

pr ,ty
pr) alongG. This can be done in vari-

ous ways, leading to various integral equations.

3 The Classic Sherman-Lauricella Integral Equation
A classic choice for the interior stress problem is to take

unknown layer densityr of ~9! in the following way~@6#!:

r~z!5v~z!2 z̄v8~z!. (12)

The choice~12! makesc of ~9! assume the form

c~z!5
1

2p i EG

v~t!dt̄

~t2z!
1

1

2p i EG

v~t!dt

~t2z!
2

1

2p i EG

t̄v~t!dt

~t2z!2 .

(13)

The requirement of prescribed traction onG leads, via~3!, to
the Lauricella integral equation forv

~ I 1MSL!v~z!5g~z!, zPG, (14)

accompanied with the solvability conditions thatg(z) must be
single valued and

Q1g50. (15)

In ~14!–~15! the notationg(z) has been introduced for the integr
of traction alongG from a pointz(s0) as

g~z!5 i E
s0

s~z!

tds, zPG,

wheret5tx
pr1 i t y

pr , and the operatorQ1 is a mapping fromG to R,
defined by

Q1g5
1

S
ReH E

G
g~z!dz̄J , (16)

where S is the perimeter of the body, andMSL is a compact
integral operator given by

MSLv~t!5
1

2p i F EG

v~t!dt

~t2z!
2E

G

v~t!dt̄

~ t̄2 z̄!
2E

G

v~t!dt

~ t̄2 z̄!

1E
G

~t2z!v~t!dt̄

~ t̄2 z̄!2 G . (17)

Consider now the integral operatorB suggested by Sherman@1#
and defined by

Bv~z!5S 1

~z2z* !
2

1

~ z̄2 z̄* !
1

~z2z* !

~ z̄2 z̄* !2D
3

1

p i
ReH E

G

v~t!dt

~t2z* !2J , zPG, (18)

wherez* is an arbitrary point inD. Parton and Perlin@5# suggest
a simpler operatorB

Bv~z!5
1

~ z̄2 z̄* !

1

p i
ReH E

G

v~t!dt

~t2z* !2J , zPG. (19)
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Addition of the operatorB to the left-hand side of~14! gives the
Sherman-Lauricella integral equation

~ I 1MSL1B!v~z!5g~z!, zPG. (20)

Uniqueness of the solution to~20!, with the choice~18! for B, is
proven in paragraph 56 of Mikhlin@4#. Uniqueness, with the
choice~19!, is proven in paragraph 19 of Parton and Perlin@5#.

Once Eq.~20! is solved forv, various quantities of physica
interest can be computed. The displacement onG, for example,
can be obtained from

ux1 iuy5
1

2 S 1

m
1

1

k D ~ I 1M1!v~z!2
g~z!

2m
, zPG, (21)

where

M1v~z!5
1

p i EG

v~t!dt

~t2z!
, zPG. (22)

From the viewpoint of numerical efficiency, the choice betwe
~18! and ~19! for B is perhaps not so important. Greenbau
Greengard, and Mayo@7# use~20! with ~18!. Greengard, Kropin-
ski, and Mayo@8# and Strandberg@9# use ~20! with ~19!. No
author comments on the relative merits of the two choices. T
next section presents yet another choiceB. As we shall see in the
last section, this new ‘‘twist’’ can make a substantial differenc

4 A New Operator B
Equation~14! with the solvability condition~15! does not have

a unique solution. The operator on the left-hand side of~14! is
rank-one deficient. On the unit disk, for example, a null-vecto
vn5 iz. We suggest the uniqueness condition

Q1~ I 1M1!v50. (23)

We see, from~16! and~21!, that the condition~23! has a physical
interpretation in terms of average tangential displacement onG.
Two useful relations are

Q1~ I 1MSL!v50, (24)

Q1in51. (25)

We are now in the position to propose a new equivalent form
lation for ~14! and ~23!, assuming that~15! holds. The new for-
mulation is based on the choice

Bv~z!5
in

2
Q1~ I 1M1!v~z!, zPG. (26)

This choice forB differs from the choices~18! and ~19! in two
respects: It has a clear physical interpretation and, more im
tantly, it does not involve the arbitrary pointz* . The Sherman-
Lauricella equation now reads

S I 1MSL1
in

2
Q1~ I 1M1! Dv~z!5g~z!, zPG. (27)

Equation~27! trivially follows from ~14! and ~23!. To prove the
converse, we applyQ1 from the left in~27! and use the relations
~24!–~25! and~15!. This gives~23!. Subtraction of~23! from ~27!
gives back~14!.

Uniqueness of the solution to~27! can be proven using the
same technique as in paragraph 56 of Mikhlin@4# and observing
the relations

f~z!5
1

2
~ I 1M1!v~z!, zPG, (28)

and

Q1iz52A/S, (29)

whereA is the area of the body.
DECEMBER 2000, Vol. 67 Õ 659
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5 A Modified Muskhelishvili Equation
An interesting extension for the interior stress problem is to

it involve a problem exterior toD. The exterior problem is one
where the prescribed traction onG is zero and the stress at infinit
is zero. We shall seekF and C such that the two problems ar
solved simultaneously. Clearly,F andC are zero outsideD. This
follows from the uniqueness of the solution to the second fun
mental exterior problem in the plane~@4#!, and implies thatV of
~10! andJ of ~11! are boundary values of analytic functions inD.
Now we chooseV to be the value ofF on G, and chooseJ in
such a way that the traction is zero outsideG and jumps a quantity
t as G is crossed. The jump condition makesC of ~11! take the
form

C~z!52
1

2p i EG

F~t!dt̄

~t2z!
2

1

2p i EG

t̄F~t!dt

~t2z!2

2
1

2p i EG

n̄ t̄ dt

~t2z!
, zPD. (30)

The requirement that the traction outsideG is zero leads to the
following integral equation forF on G

~ I 2M3!F~z!5
n̄t~z!

2
1

n̄

n

1

2p i EG

ntdt̄

~ t̄2 z̄!
, zPG, (31)

accompanied with the solvability condition

Q2n̄t50, (32)

where

Q2f 52
1

2A
ReH E

G
f ~z!z̄dzJ . (33)

In ~31! M3 is a compact integral operator given by

M3F~z!5
1

2p i F EG

F~t!dt

~t2z!
1

n̄

n EG

F~t!dt

~ t̄2 z̄!
1E

G

F~t!dt̄

~ t̄2 z̄!

1
n̄

n EG

~t2z!F~t!dt̄

~ t̄2 z̄!2 G . (34)

Equation~31! can be viewed as the derivative of the conjugate
Eq. ~7! in paragraph 54 of Mikhlin@4#. That equation was origi-
nally derived by Muskhelishvili.

A quantity of physical interest, which can be computed on
~31! is solved forF, is the complex tangential derivative of th
displacement onG

d

dz
~ux1 iuy!5S 1

k
1

1

m DF~z!2
n̄t

2m
, zPG. (35)

The following Lemma will be useful for proving Eq.~39! below.

LEMMA 5.1.

Q2i 51, (36)

Q2~ I 2M3!F50. (37)

Proof. Equation ~36! is proven by applying Gauss’ theorem
Equation ~37! is proven by expressing (I 2M3)F explicitly in
terms of analytic potentials and then applying Cauchy’s th
rem. h

Equation~31! with the solvability condition~32! does not have
a unique solution. The operator on the left-hand side of~31! is
rank-one deficient. Imaginary constants are null-solutions. For
solutionF we can form a new solution asF1 ia, wherea is a
real constant. See paragraph 54 of Mikhlin@4# for a similar result
for the null-space of an operator derived for the potentialf. Here
we propose the uniqueness condition
660 Õ Vol. 67, DECEMBER 2000
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Q2F50. (38)

We see, from~33! and ~35!, that the condition~38! has the same
physical interpretation as the condition~23!.

We are now in the position to propose a new formulation
~31! and ~38!, assuming that~32! holds.

THEOREM 1. Given the solvability condition (32), equation (31
and the uniqueness condition (38) are equivalent to the follow
Fredholm equation of the second kind

~ I 2M31 iQ2!F~z!5
n̄t~z!

2
1

n̄

n

1

2p i EG

ntdt̄

~ t̄2 z̄!
, zPG.

(39)

Proof. Equation ~39! trivially follows from ~31! and ~38!. To
prove the converse, we applyQ2 from the left in~39! and use the
relations~36!–~37! and ~32!. This gives~38!. Subtraction of~38!
from ~39! gives back~31!. h

Uniqueness of the solution to~39! can be proven using the
method of paragraph 54 in Mikhlin@4#. First one proves that an
assumed homogeneous solution,F0 , to ~39! has to be an imagi-
nary constant. Then~38!, which is implied by~39!, gives that this
constant is zero.

6 Numerical Comparison Between Formulations
In this section we undertake a comparison between algorith

for the classic Sherman-Lauricella Eq.~20! with the choice~19!
for B, for the modified formulation~27!, and for the modified
Muskhelishvili Eq. ~39!. The algorithms are of Nystro¨m type
based on composite 16-point Gaussian quadrature and
GMRES iterative solver~@10#!. The iterations are terminate
when the residual is as small as it can get, which typically me
2•10215. Compensated summation~@11,12#! is used for the com-
putation of matrix-vector multiplications and inner products in t
GMRES iterative solver. For details on how to regularize t
Cauchy-type singular operatorM1 of ~22!, see Helsing and Jons
son @13#.

For setups with smooth boundaries and analytical solutio
such as loaded circular or elliptic disks, it is hard to say wh
equation leads to the best algorithm. Algorithms based on
three equations all require only a few GMRES iterations for f
convergence. Nontrivial examples are needed in order to de
differences in performance.

When comparing the performance of the algorithms below,
need a reference quantityqref to measure accuracy against. W
have decided to use theL2 norm of the hydrostatic stress onG,
that is

qref5S E
G
~sxx~z!1syy~z!!2dsD 1/2

, (40)

as such a reference quantity.
Example 1: A Symmetric Starfish. We first consider a body in

the shape of a nine-armed starfish parameterized by

z~ t !5~110.36 cos 9t !eit , 0<t,2p. (41)

The load is chosen as

g~z!5z2. (42)

We start out with testing the algorithm for the classic Eq.~20!
with B as in~19!. The starfish of~41! is symmetric with respect to
the origin. A natural choice for the arbitrary point is therefo
z* 50. With this choice forz* the algorithm for the classic Eq
~20! requires 2000 discretization points to reach a relative erro
qref of 10212. Upon increased resolution the quality of the soluti
slowly gets worse.~See Fig. 1.! The number of GMRES iterations
required is 25. The sensitivity to the placement of the arbitr
point z* turns out to be quite large in this example. When t
position ofz* 50 is changed a tiny distance toz* 50.01i , which
Transactions of the ASME
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still is far away from the boundary of the starfish contour, th
number of GMRES iterations needed for convergence more th
doubles~see Fig. 2!.

The algorithm for the modified formulation~27! gives results
which are almost identical to those of~20! with the optimal choice
z* 50. ~See Fig. 1.! The algorithm for the modified formulation
requires also about 2000 discretization points for a relative err
in result qref of about 10212. Solving the system of linear equa-
tions takes 24 GMRES iterations, which is one iteration less tha
for ~20! with the optimal choicez* 50. ~See Fig. 2.!

The algorithm for the modified Eq.~39! has, by far, the best
stability properties in this example. Like the previous formula
tions it gives a relative error inqref of about 10212 for 2000 dis-

Fig. 1 Example 1. Convergence of the reference quantity q ref
of „40…, defined as the Euclidean norm of the hydrostatic stress
on the boundary, for algorithms based on the classic Eq. „20…
with z*Ä0, the modified formulation „27…, and the modified Eq.
„39…. The correct value, q refÄ71.79088302407723 was computed
using quadruple precision arithmetic.

Fig. 2 Example 1. The iteration history from GMRES for the
classic Eq. „20… and the modified formulation „27…. The number
of discretization points is 2080. The iterations are terminated
when the residual is less than 5 "10À15.
Journal of Applied Mechanics
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cretization points, but as the resolution is increased the relativ
error in qref decreases further and stabilizes on about 2•10215.
Equation~39! also gives the best results for underresolved calcu
lations.~See Fig. 1.!

Example 2: An Irregular Starfish. The starfish of~41! has an
obvious symmetry pointz50 which, as we have seen, is the
optimal choice for the arbitrary pointz* . To investigate the prop-
erties of the three algorithms under more general conditions w
perturb the geometry in the previous example so that all arms
the starfish have different shapes

z~ t !5~110.1 sint10.36 cos 9t !eit , 0<t,2p. (43)

The load is changed to

g~z!5z22
izSQ1z2

2A
, (44)

so that the solvability conditions~15! and ~32! still are satisfied.
The convergence properties for the three algorithms in this e

ample turn out to be similar to those in Example 1.~See Fig. 3.!
The main difference is that GMRES now requires 105 iteration
for full convergence instead of the 25 iterations in Example 1. A
increase in the number of iterations could be expected since t
irregular starfish of~43! constitutes a more difficult geometry than
the symmetric starfish of~41!.

The modified Eq.~39! still gives the most stable convergence
and still performs best for underresolved calculations. The algo
rithm for the classic Eq.~20!, with reasonable placements of the
arbitrary pointz* , still gives results which are similar to, or only
slightly worse than, those of the modified formulation~27!. ~See
Fig. 3.! One difference is worth pointing out: The number of
GMRES iterations needed for convergence with the classic E
~20!, and for fully resolved calculations, is less sensitive to th
placement ofz* in Example 2 than in Example 1. There seems to
be no interior point that is obviously optimal.

7 Conclusions and Outlook
We conclude that an algorithm based on the modified formula

tion ~27! has shown to be equally or more efficient for interior

Fig. 3 Example 2. Convergence of the reference quantity q ref
of „40… for algorithms based on the classic Eq. „20… with z*
placed at the center of gravity, the modified formulation „27…,
and the modified Eq. „39…. The correct value, q ref
Ä73.45130087430866 was computed using quadruple precision
arithmetic.
DECEMBER 2000, Vol. 67 Õ 661
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stress problems than an algorithm based on the classic Sher
Lauricella Eq.~20!. The chief advantage with~27! over ~20! is
that ~27! omits the need for the arbitrary pointz* . A nonoptimal
choice forz* can in certain situations greatly deteriorate the p
formance of iterative algorithms based on the classic Eq.~20!. In
addition, removal of the arbitrary pointz* is an advantage from a
coding viewpoint.

We further conclude that an algorithm based on the modi
Muskhelishvili Eq.~39! shows superior stability properties com
pared to both the classic~20! and the modified~27! Sherman-
Lauricella equations and that~39! is best for underresolved calcu
lations. This is so, since in~39! we solve for the stress potentialF
on G directly, while in ~27! we solve for the densityv. The den-
sity v is related toF on G via a transform containing differentia
tion. Differentiation is in itself an ill-conditioned operation.

In a forthcoming paper we intend to apply~39! to the problem
of computing so-called notch intensity factors of loaded rectan
lar specimens.
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A Stress and Relative
Density-Dependent Dynamic
Compliance Spectra Model of the
Creep Response of Microcellular
Polycarbonate
The present paper reports a new discrete complex compliance spectra method in
each frequency component is a direct function of stress and relative density. Compa
between model calculations and experimental measurements show that the model e
excellent quantitative agreement at all experimental stress-relative density states
significantly smoothes the experimental input data. It is anticipated that design engi
will use the present method to accurately predict the creep strain histories resulting
a broad range of specific stress-relative density combinations.@S0021-8936~00!01804-3#
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1 Introduction
Microcellular foams are generally closed-cell foams with av

age cell size of order 10 micrometers~@1#!. Such foams are char
acterized by a high density of cells, usually exceeding 100 mill
cells per cubic centimeter. The high cell density makes it poss
to achieve significant reductions in density of the polymer wh
keeping the average cell size small. Such foams have been cr
in polycarbonate using carbon dioxide as the gas for bubble nu
ation ~@2#!. The polycarbonate-carbon dioxide system has bee
model microcellular system, and a number of investigations h
focused on the properties of this system. For example, ten
fatigue, and fracture toughness studies have uncovered s
unique properties of these novel foams~@3–6#!. A key advantage
offered by microcellular foams is the potential to reduce
amount of material needed by replacing the solid polymer b
microcellular polymer of reduced density. As polycarbonate
used in many load-bearing applications, a knowledge of the c
behavior of microcellular polycarbonate is of special interest.
experimental investigation of the time dependent response of
crocellular polycarbonate foams was conducted by Wing@7# who
found that creep strains of the foams contain a significantly hig
viscoplastic component compared to the unfoamed material. W
obtained creep data on foams of relative densities~density of foam
devised by the density of polycarbonate! of 1.00, 0.95 and 0.81
The specimens were subjected to various levels of constant
sion for eight hours.

Wing et al. @8# have presented a model for the creep respo
of microcellular polycarbonate based on the Schapery’s theor
nonlinear viscoelasticity. The present paper reexamines the
perimental measurements of Wing@7# with a new stress and rela
tive density-dependent discrete dynamic compliance spe
method. Comparison between model calculations and experim
tal measurements show that the new spectra model exhibits e
lent quantitative agreement at all experimental stress-relative
sity states. A materials scientist may use the present m

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIET

OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP-
PLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
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Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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interactively to design experiments which will allow the accura
modeling of nonlinear creep properties of the microcellular ma
rial over a broad range of stress and relative density. A desig
may use the present model to identify the creep strain as a f
tion of time resulting from a given stress-relative density com
nation, or to identify relative density range over which the ma
rial provides relatively stable creep properties.

The present model requires a set of creep curves measure
der variable stress and material relative density as input, and
predicts the creep strain under general conditions of time, str
and relative density as output. The method in essence uses m
thousands of creep parameters, a process made mathemat
tractable by the use of fast Fourier transforms. This method
selected in order to construct a single mathematical entity wh
may be accurately applied to the prediction of the response
highly nonlinear viscoelastic media over very broad stress
relative density conditions. The method is quite general, and m
be applied to many other multivariable time-dependent proble
in engineering.

2 A Stress and Relative Density-Dependent Discrete
Dynamic Compliance

The present method will make use of fast Fourier transfor
~@9#!. The first analysis task is, therefore, to fit time-sampled
perimental creep data with an appropriate set of continuous fu
tions which may be evaluated at a regular interval. The pres
calculation uses ann50 to 2 series of Chebyshev polynomials
the first kind for this purpose, the Chebyshev polynomials of
first kind, Tn , being defined by

Tn~Cosu!5Cos~nu! (1)

and obeying the orthogonality condition.

E
21

1

Tm~x!Tn~x!~12x2!21/2dx50, $mÞn% (2)

A discrete creep strain frequency spectra for each of the in
vidual creep tests may now be constructed by fast Fourier tra
forming a strain list with an initial element equal to zero a
subsequent elements obtained for the creep strain time func
~@10–16#!. The present calculations set the first strain time sam
equal to zero and then evaluate the fitted creep strain funct
every 10 seconds from 1 to 651 seconds to produce a 67-ele

,
el.
essor
on,
li-
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time-sample list. The experimental discrete strain frequency c
ponents may then be obtained by fast Fourier transforma
~@15#!

ẼS n

NTD5
1

AN
(
k50

N21

«~kT!expF2p i
nk

N G (3)

whereN is the number of elements in the time sample list andT is
the time-sampling interval. The same numerical procedure is u
for the stress, assuming an ideal creep stress step time sequ

s~kT!5$0,s0 ,s0 , . . . ,s0% (4)

A discrete dynamic compliance may then be obtained by co
plex division of stress frequency components with correspond
strain frequency components.

J̃5H ẼS 0

NTD
S̃S 0

NTD ,

ẼS 1

NTD
S̃S 1

NT D ,

ẼS 2

NTD
S̃S 2

NTD , . . . ,

ẼS N21

NT D
S̃S N21

NT D J (5)

We now assume that the real and imaginary parts of each
crete frequency component smoothly vary with applied stress
relative density. We may then assemble a stress and rela
density-dependent discrete dynamic compliance spectra by re
sion for the real and imaginary parts of each experimental disc
dynamic compliance component. The regression basis used fo
present calculations is given by

(
i 50

2

(
k50

2

Ti~r rel!TkS s

60 106D . (6)

Fig. 1 The stress-relative density dependencies of the real,
„a…, and imaginary, „b…, parts of the third discrete dynamic com-
pliance component. Dots indicate experimental measurements.
664 Õ Vol. 67, DECEMBER 2000
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Figure 1 shows the real,~a!, and imaginary,~b!, response sur-
face of the third discrete dynamic compliance frequency com
nent as functions of relative density and applied stress. Exp
mental stress-relative density states are identified with black d
The figure shows that the real and complex parts of the dyna
compliance appear to be smooth, easily fit functions of stress
relative density within the experimental range. The present cr
behavior is clearly under sampled at low relative density and h
stress. An additional measurement at a relative density of appr
mately 0.81 and a stress of approximately 34 MPa would v
likely have improved model predictions in this stress-relative d
sity region.

3 Evaluation of the Creep Model
The calculation of creep processes begins by the evaluatio

the real and complex parts of the stress-dependent dynamic c

Fig. 2 Comparison between experimental creep measure-
ments and model calculations; „a… relative density Ä0.81, s
Ä27.6, 24.1, and 13.8 Mpa, „b… relative density Ä0.95, sÄ34.5,
31.0, and 20.7 Mpa, and „c… relative density Ä1.00, sÄ51.7, 48.2,
and 41.3 Mpa.
Transactions of the ASME
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pliance spectra for a particular level of applied stress and rela
density. The discrete creep strain frequency spectrum may the
obtained by multiplying dynamic compliance spectra compone
by corresponding stress frequency components. The creep s
as a function of time is then obtained by inverse discrete Fou
transformation.

«~kT!5
1

AN
(
n50

N21

ẼS n

NTDexpF22p i
nk

N G (7)

Figure 2 compares experimental creep measurements
model calculations at each experimental applied stress-rela
density condition. The figure shows that the model exhibits ex
lent quantitative agreement at all experimental stress-relative
sity states. The model also provides further benefit by significa
smoothing the experimental data. The ability of the model to p
cisely match all experimental measurements along with
smoothness of the dynamic compliance response surfaces ind
that the model should provide accurate interpolation and so
range of accurate extrapolation to nonexperimental stress-rel
density states when the dynamic compliance surfaces are
sampled. A materials scientist may therefore use the pre
model interactively to design experiments which will allow th
accurate modeling of the nonlinear creep of the microcellular m
terials over a broad range of stress and relative density.

Fig. 3 Predicted creep strain as a function of applied stress
and relative density; „a… creep strain after 31 minutes with one
percent creep contours ranging evenly from 3 percent strain to
9 percent strain, and „b… creep strain after 501 minutes with one
percent creep contours ranging evenly from six percent strain
to 12 percent strain.
Journal of Applied Mechanics
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The model may be further used to calculate the creep st
corresponding to any time sample coordinate as a genera
function of stress and relative density. Figure 3 shows two
amples of how the resulting isochronal creep prediction may
displayed as a contour plot. A designer may use such a plo
identify stress-relative density combinations which will not res
in an excessive accumulation of creep strain, or to identify rela
density ranges over which the microcellular material provid
stable creep properties. For example, Fig. 3~a! shows that a mi-
crocellular polycarbonate sample with a relative density of 0
under a 30 Mpa stress will strain nearly the same amount after
seconds as a 0.99 relative density sample under a 40 Mpa s
The plot further shows that the creep of microcellular polycarb
ate is very sensitive to changes in relative density when the r
tive density is between 1 and 0.96, and much less sensitiv
changes in relative density when the relative density is betw
0.95 and 0.85. Therefore, it would appear to be very difficult
obtain consistent creep measurements from materials with rela
densities above 0.95.

4 Summary and Conclusions
The present paper reports a new stress and relative den

dependent discrete dynamic compliance spectra method w
may be used to model the creep behavior of nonlinear viscoela
microcellular materials. Comparisons between model calculati
and experimental measurements show that the model exhibits
cellent quantitative agreement at all experimental stress-rela
density states. The model also significantly smoothes the exp
mental data. A materials scientist may use the present mode
teractively to design experiments which will allow the accura
modeling of the nonlinear creep properties of the microcellu
material over a broad range of stress and relative density. A
signer may use the present model to identify the creep strain
sulting from a given stress-relative density combination afte
given amount of time, or to identify relative density ranges ov
which the material provides relatively stable creep properties.
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Effective Elastic Properties of
Porous Materials With Randomly
Dispersed Pores: Finite
Deformation
A method is developed for the analysis of the effective properties of porous non
elastic materials with randomly distributed interacting pores under finite deformatio
The method is based on the solution of the problems of nonlinear elasticity for a re
sentative region using Signorini’s expansion. The constitutive equations for the m
material and for the comparison material are written in a form corresponding to M
naghan’s potential. The technique, which is used for ensemble averaging, approxim
simulates the uniform distribution of pores. The computations are performed for p
strain, when pores are equal in size, and a circular cylindrical shape in the undefor
state is assumed.@S0021-8936~00!01802-X#
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1 Introduction
There are two well-known approaches to the analysis of ef

tive mechanical properties of inhomogeneous materials that
be applied to linear as well as to nonlinear problems. One of th
is concerned with bounds on the effective characteristics of in
mogeneous materials using variational principles. The variatio
principle for linear elasticity has been proposed by Hashin
Shtrikman@1#. The boundaries of the effective properties of no
linear elastic materials under small deformations have been
sidered by Willis@2,3# and Ponte Castaneda@4#. Ponte Castaneda
and Zaidman@5# analyzed the effect of evolution of microstruc
ture on the effective properties of nonlinear viscous porous m
rials under quasi-static strains.

Another approach for estimation of effective properties is c
cerned with the solution of a boundary value problem for a r
resentative region or a cell of inhomogeneous material, follow
by homogenization. The effective properties of materials with
riodically arranged pores have been analyzed with the use of
approach by Horvay@6# and Filshtinskiy@7# for linear elasticity
and by Abeyaratne and Triantafyllidis@8# for nonlinear elasticity.
The effective characteristics of linear elastic materials with r
domly distributed interacting cracks and pores of different sha
have been investigated by Kachanov@9#, Kachanov et al.@10#,
Mauge and Kachanov@11#, and Shafiro and Kachanov@12#. In
particular, Mauge and Kachanov@10# performed computations fo
a range of sample crack arrays positioning cracks with the hel
a random number generator.

Levin et al.@13,14# considered a method of estimation of effe
tive properties of porous bodies with uniform and statistically is
tropic distribution of pores. In those papers, it is assumed that
centers of pores are located on the nodes of a mesh prescrib
the representative region; the number of pores in this regio
fixed; and all possible arrangements of pores are equiprobab

In the present paper, the approach of Levin et al.@13,14# is
further developed. In contrast to those papers, the number of p

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
tember 9, 1998; final revision, January 3, 2000. Associate Technical Editor: L
Wheeler. Discussion on the paper should be addressed to the Technical Editor
fessor Lewis T. Wheeler. Department of Mechanical Engineering, University
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in the representative region is not fixed, and the probability
each arrangement of pores is assumed to be a function of poro
This modification of the approach considered permits one to av
the repetition of computations for different values of porosity.

2 Averaging Over a Representative Region
Let us concentrate now on two-dimensional problems. At fi

we consider the scheme of averaging over a representative
Elastic moduli of the comparison material are determined fr
the following assumption, considered by Horvay@6# and Filshtin-
skiy @7#: If the comparison material occupies the representa
region including pores, the average displacements on each sid
this region are equal to the ones for the given porous materia
the same loads.

Let the shape of pores be prescribed in the undeformed c
figuration. Let the Cartesian coordinates with axesx1 and x2 be
chosen in this configuration. It is assumed that the representa
areaS is a parallelogram of sidesa andb that make angles ofa
andb with the x1-axis, correspondingly~Fig. 1!.

Let A, B, C, D be the vertices ofS, G be the boundary ofS, gk
be the boundaries of pores withinS ~it is assumed thatgk never
intersectsG!. Let the uniform stressess5s i j eiej be given onG;
u(x)5um(x)em is the vector of displacements which are broug
about by the given stresses. Letue5um

e em , Ce5C i j
e eiej respec-

tively denote the displacement vector and the deformation gr
ent of the comparison material at the same loads. Because
loads on the boundaryG are constant and the comparison mater
is uniform, the strains of the comparison material are affine. T

um
e 5~Cnm

e 2dnm!xn1cm . (1)

Taking into account the definition of the comparison mater
we have

E
AD

um
e dl5E

AD
umdl;E

BC
um

e dl5E
BC

umdl;

E
AB

um
e dl5E

AB
umdl;E

DC
um

e dl5E
DC

umdl. (2)

It follows from ~1!, ~2! that

p-
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~C11
e 21!cosb1C21

e sinb5
1

b
@^u1&uDC2^u1&uAB#,

~C11
e 21!cosa1C21

e sina5
1

a
@^u1&uBC2^u1&uAD#,

C12
e cosb1~C22

e 21!sinb5
1

b
@^u2&uDC2^u2&uAB#,

C12
e cosa1~C22

e 21!sina5
1

a
@^u1&uBC2^u1&uAD#. (3)

Here ^u&uPQ5(1/uPQu)*PQudl.
Solving the set of linear Eqs.~3!, one can obtainC i j

e . It should
be noted that in the special case, when the representative are
square whose sides are parallel to the coordinate axes, the s
Eqs. ~3! can be reduced to the equations considered by Le
et al. @13,14#.

In order to determine the effective moduli for a given arrang
ment of pores inS, we use the technique described by Levin et
@14#. The nonlinear problem of elasticity is solved using Signo
ni’s expansion technique up to the second order~@15–18#!. The
solution can be represented in the form

um5 u
~0!

mi js i j 1 u
~1!

mi jkls i j skl (4)

Substituting~4! into ~3! and solving~3!, we have

Cmn
e 5dmn1 S

~0!

mni js i j 1 S
~1!

mni jkls i j skl . (5)

If we substitute~5! into the expression for the Green strain tens

Ee5
1

2
~CeCeT2I !, (6)

and retain in the obtained expression only linear and quadr
terms, we have

Emn
e 5 T

~0!

mni js i j 1 T
~1!

mni jkls i j skl . (7)

And finally, solving the system~7! by the perturbation techniqu
up to the second order, we can write the effective constitu
equations in a form

(mn
0 5 C

~0!

mni jEi j
e 1 C

~1!

mni jklEi j
e Ekl

e , (8)

where(mn
0 are components of the second Piola-Kirchhoff stre

tensor

S05~detC!~CT!21
•S0

•C21. (9)

The solution of nonlinear elasticity problems for the repres
tative area with pores is arrived at with the use of a speciali

Fig. 1 Representative area
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computer algebra system. In addition, we proceed from the
sumption of Mori-Tanaka’s scheme~@19#!. Following Kachanov
et al. @10#, we solve the problem for given far-field stresses th
are assumed to be equal to the average stresses in a matrixs i j

M ,
determined as

s i j
M5~12p!21s i j ,

wheres i j are the average stresses in a porous medium andp is the
porosity of a given material.

The interactions between pores within the representative
are taken into account during the solution of the problem of n
linear elasticity.

3 Ensemble Averaging
Let us concentrate now on the scheme of ensemble avera

~which approximately simulates a statistically uniform distributi
of pores!. We suppose that all the pores assume a circular shap
the undeformed state and are uniform in size. Let the represe
tive areaS a square of sidea, whose sides are parallel to th
coordinate axes. The uniform mesh with nodes (xi ,yj ) is con-
structed inS:

xi5~ i 11/2!h, yj5~ j 11/2!h, (10)

wherei 50, . . . ,N21, j 50, . . . ,N21, h5a/N; N.0 is a given
integer.

The arrangements of nodes atN52 and atN53 are shown in
Fig. 2, as an example.

It is assumed that centers of pores are located exactly on
nodes of the mesh. For each arrangement of pores satisfying

assumption, the effective moduliC
(0)

mni j , C
(1)

mni jkl , are computed
using the scheme presented above. Then the averaging ove
these arrangements is performed with regard for their proba
ties, which depend on porosity. Note that the number of pore
the representative area is not fixed, unlike in Levin et al.@13–14#.
Note also that the conditionR,h/2 is sufficient to avoid intersec
tions of boundaries of poresgk with one another and withG ~R is
the pore radius!.

Let P denote the probability of existence of a pore, who
center is at a certain node. It is assumed thatP doesn’t depend on
the existence of pores whose centers are in other nodes. Ta
into account these assumptions, one can obtain an expressio
porosity:

p5P pR2

h2 . (11)

From ~11! one can expressP in terms of porosity:

P5p
h2

pR2 . (12)

Let P(k) denote the probability that the regionScontains exactlyk
pores. With regard for the assumptions made,P(k) can be repre-
sented as

P~k!5Cn
kPk~12P!n2k (13)

~n5N2 is the number of nodes inS; Cn
k are binomial coefficients!.

Fig. 2 Arrangement of nodes in the representative area; „a…
NÄ2, „b… NÄ3
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Let ^C& be one of the modulî C
(0)

mni j&, ^ C
(1)

mni jkl&, obtained by
all possible arrangements of pores inS, and ^C&uk be the corre-
spondent modulus, obtained by averaging by the arrangem
for the regionS which contains exactlyk pores. Then

^C&5(
k50

n

^C&ukP~k!. (14)

Note that when the probabilityP is small enough~but not nec-
essarily infinitesimal!, one can compute the moduli^C&uk at k
.n0 ~n0,n is a given integer! neglecting the interaction betwee
pores inS without significant loss of accuracy.

After the computation of modulîC
(0)

mni j&, ^ C
(1)

mni jkl&, the aver-
aging by all possible orientations of coordinate axes in the pl
of deformation is performed, following Shermergor@20# and
Levin et al.@14#. This averaging permits one to represent the
fective constitutive equations in a form proposed by Murnagh
@21# ~see also Lurie,@16#!.

S05le~Ee:I !I12GeEe13C3
e~Ee:I !2I1C4

e@~Ee!2:I #I

12C6
e~Ee:I !Ee13C5

e~Ee!2 (15)

It was noted by Levin et al.@14# that one cannot uniquely de
termine all four moduliC3

e , C4
e , C5

e , C6
e in ~16! restricting oneself

to the plane-strain problems. In that case one of these moduli
be given arbitrarily. After that, another three moduli are det
mined uniquely, and the value of the arbitrarily prescribed mo
lus has no effect on the behavior of the comparison material un
plane strain.

Note that, as follows from~11!, use of the scheme considered
limited by the maximal value of porositypmax5pR2/h2.

4 Computations and Numerical Results
In the present paper the computations are performed for

case when the mechanical properties of the matrix are descr
by Murnaghan potential~@21#! and the constitutive equations hav
the form

S05l~E:I !I12GE13C3~E:I !2I1C4~E2:I !I12C4~E:I !E

13C5E2. (16)

Fig. 3 Effective linear elastic moduli le, Ge and upper Hashin-
Shtrikman bounds lh, Gh referred to the correspondent matrix
moduli versus porosity
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Because the solution of the problem of nonlinear elasticity,
tained by the perturbation technique up to the second order,
pends linearly on the material constantsC3 , C4 , C5 , the effective
moduli Ci

e , computed by the scheme considered, also depend
early on these constants:

Fig. 4 Coefficients a3 , a5 , a6 versus porosity

Fig. 5 Coefficients b 33 , b 55 , b 46 versus porosity

Fig. 6 Coefficients b 34 , b 54 , b 35 versus porosity
DECEMBER 2000, Vol. 67 Õ 669
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bi j Cj , ~ i 53,5,6!. (17)

It is assumed that the effective modulusC4
e is arbitrarily pre-

scribed and

C4
e5C4~12p!2. (18)

The plots of the effective moduli versus porosity are presen
below for the matrix materials withl/G52.24 atR/h50.4, N
52, n05N254. The ratiosle/l, Ge/G are plotted in Fig. 3, the
coefficientsai are plotted in Fig. 4, and the coefficientsbi j are
plotted in Figs. 5–7. If the matrix constantsC3 , C4 , C5 are known,
one can obtain the effective moduliC3

e , C5
e , C6

e from Eq.~17! with
C4

e given by ~18!.

Fig. 7 Coefficients b 53 , b 63 , b 65 versus porosity

Fig. 8 Effect of the computational parameters on the plot of
the coefficient a6 versus porosity
670 Õ Vol. 67, DECEMBER 2000
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The computations performed show also that the correction
the effects of interaction between pores within the representa
area do not exceed three percent for the modulile andGe and 20
percent for the coefficientsai , bi j for p<0.4. Note that Mauge
and Kachanov@11# discovered the same effect analyzing the
fective properties of linear elastic solids with arbitrarily locat
microcracks. The plots of the coefficienta6 versus porosity, com-
puted at the various values ofR/h, N, andn0 , are presented in
Fig. 8, as a reference~at n051, the interaction between pore
located within the representative region is neglected!.
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Development of One-Dimensional
Models for Elastic Waves in
Heterogeneous Beams
In order to develop an accurate one-dimensional model for wave propagation in he
geneous beams with uniform cross sections, a Hamilton-type principle is develop
incorporating Reissner’s semi-complimentary energy function. Trial displacement
transverse stress fields are constructed from the solutions of micro-boundary value
lems (MBVP’s) defined over the cross section. The MBVP’s are developed
asymptotic expansions that assume a small diameter cross section compared to th
length and a typical signal wavelength. Saint Venant’s semi-inverse torsion and fle
problems are included in the system of MBVP’s. By utilizing the displacement and t
verse stress fields constructed from the numerical solutions of the MBVP’s, the con
tive relations are developed. The model generalizes the Mindlin-Hermann rod mode
the Timoshenko beam model for anisotropic heterogeneous beams. The accuracy
model is assessed by comparing the predicted phase velocity spectra to those comp
using a semi-analytical finite element method. Numerical results are shown for reinfo
concrete beams with exterior composite layers.@S0021-8936~01!00601-8#
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Introduction
The existing composite beam models were constructed b

upon elementary kinematics, a Taylor series expansion, and
minimum potential energy theorem with appropriate trial d
placements. Discussion of these models may be found in a re
article by Kapania and Raciti@1# for laminated composite beam
and in papers by Bank and Kao@2# and Song and Librescu@3# for
thin and thick-walled beams.

Kosmatka and Dong@4# developed an anisotropic beam mod
for quasi-static deformation of prismatic composite beams by
lizing the displacement field obtained from Saint Venant’s se
inverse analyses. Pecastaings, Sun, and Davenne@5# also em-
ployed Saint Venant’s warping functions to improve the accur
of elementary solutions for heterogeneous beams with isotr
constituents. Their work shows the advantage of construc
beam models from the solutions of the semi-inverse analyses

For homogeneous isotropic prismatic bars with uniform cr
section, the Timoshenko beam theory~@6#! and the Mindlin-
Herrmann rod theory~@7#! were constructed to mimic the wav
propagation in an isotropic cylinder with uniform circular cro
section. These problems are known as the Pochhammer pro
~@8–10#!. In order to examine the accuracy of the element
theory as applied to heterogeneous beams with isotropic cons
ents, phase velocity spectra were computed by the authors
ploying a semi-analytical finite element method~@11#!. Strong
wave dispersion was observed for both longitudinal and flexu
wave propagation, which is consistent with Pochhammer’s s
tion for the problem of isotropic circular cylinders~@12,13#!.
Therefore, in order to capture wave dispersion, it is necessar
construct high-order theories for heterogeneous rods, beams
shafts; hereafter they are all referred to as heterogeneous be

To date, a high-order one-dimensional theory has not been
ported for dynamic response of heterogeneous beams. The

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, N
vember 6, 1998; final revision, June 6, 2000. Associate Technical Editor: A. K. M
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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presented was performed in response to a need for an econo
beam model that captures stress and strain concentrations ar
reinforcing bars under initial seismic loading of reinforced co
crete columns. Elastic stress concentrations cause the ons
major crack formation emanating from the bars.

The objective of this paper is to develop a one-dimensio
theory for heterogeneous beams with uniform cross section
what follows, Reissner’s semi-complementary energy functi
originally developed for plates~@14#!, was modified for heteroge
neous beams. The resulting semi-complementary energy func
for the beam was then incorporated into a Hamilton-type princi
to establish a dynamic extension of the mixed variational equa
based upon displacements and transverse stresses~@15#!. ~In beam
problems, the transverse stresses are stress components exc
axial normal stress.! In order to furnish trial displacement an
transverse stress fields, asymptotic expansion, assuming a
diameter cross section in relation to the axial length and a typ
signal wavelength, was employed to define micro-boundary va
problems~MBVP’s! over the cross section. Saint Venant’s sem
inverse torsion and flexure problems for heterogeneous cross
tions are included in the systems of MBVP’s. Numerical examp
are shown for composite-retrofitted reinforced concrete colum
with circular and square cross sections. The model accurac
assessed by comparing the predicted phase velocity spect
those obtained from the three-dimensional theory of elasticity

Formulation of the Problem
Figure 1 illustrates the circular and square cross sections of

retrofitted reinforced concrete columns with exterior compos
layers. Let thex3-axis be in the direction of the beam axis, and t
x1 ,x2-plane be the plane of the cross section. Thex1 , x2 , and
x3-axes form a rectangular Cartesian coordinate system. The a
region of the beam with lengthL is 0<x3<L. The cross section
V consists of the nonoverlapping subregions of its constituents
the examples shown in Fig. 1,V consists of concreteV (2), the
exterior composite layerV (3), and the longitudinal steel bars
Vm

(1) , m51,2, . . . ,N whereN denotes the number of longitudina
bars:

V5V~1!øV~2!øV~3!, V~1!5 ø
m51

N

Vm
~1! . (1)
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For notational simplicity, the superscripts~a! denote variables
associated with constituentsa: materiala51 ~steel!, 2 ~concrete!,
and 3~composite!. The boundary of each subregion is denoted
]V (a) whose unit outward normal isni

(a) .
Cartesian indicial notation is employed along with the summ

tion convention for repeated indices. The governing relations
the displacement vectorui and the symmetric stress and stra
tensor fields,s i j andei j , in each material region are as follows
~a! Equations of motion:

s j i , j
~a!1r~a!bi

~a!5r~a!üi
~a! in V~a!, (2)

where ( ), j[]( )/]xj , r is the mass density,bj is the constant
body force, and superposed dots mean differentiation with timt.
~b! Hooke’s law:

s i j
~a!5Ci jmn

~a! emn
~a! in V~a!, (3a)

or emn
~a!5Dmni j

~a! s i j
~a! in V~a!, (3b)

where Ci jmn and Di jmn(5Ci jmn
21 ) are, respectively, the elasti

modulus and compliance tensors. The exterior composite la
~material 3! is characterized by a cylindrically orthotropic materi
that becomes monoclinic with respect to thexi-coordinate system
~@16#!. In compact notation, the strain-stress relation of mo
clinic materials is given as

5
e11

e22

e33

2e23

2e31

2e12

6
~3!

53
D11 D12 D13 0 0 D16

D12 D22 D23 0 0 D26

D13 D23 D33 0 0 D36

0 0 0 D44 D45 0

0 0 0 D45 D55 0

D16 D26 D36 0 0 D66

4
~3!

35
s11

s22

s33

s23

s31

s12

6
~3!

in V~3!, (3c)

where indices 1–6 forDi j (5D ji ) are interpreted as

@1 2 3 4 5 6#[@11 22 33 23 31 12#.

For isotropic material 1~steel! and material 2~concrete!, the non-
zero components of the compliance tensor can be written in te
of Young’s modulusE and Poisson’s ration.

In matrix form, Eq.~3c! becomes

$e%~a!5@D#~a!$s%~a!5@C#~a!21
$s%~a! a51,2,3. (3d)

~c! Strain-displacement relations:

Fig. 1 Heterogeneous beams with „a… circular and „b… square
cross sections
672 Õ Vol. 67, DECEMBER 2000
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~a!5

1

2
~um,n

~a! 1un,m
~a! ! in V~a!. (4)

~d! Interfacial boundary conditions:

ui
~1!5ui

~2! , s j i
~1!nj

~1!5s j i
~2!nj

~1! on ]Vm
~1! , m51,2, . . . ,N,

(5)

ui
~2!5ui

~3! , s j i
~2!nj

~2!5s j i
~3!nj

~2! on ]Vo
~2! , (6)

which represent the continuity of displacements and tractions
each interface between the steel bars and concrete]Vm

(1) and on
the interface between the concrete and composite layer]Vo

(2) .
~e! Lateral traction boundary conditions:

s j i
~3!nj

~3!5pi on ]Vo , (7)

wherepi is a prescribed function of time and]Vo([]Vo
(3)) is the

exterior boundary of the cross section.
~f! End conditions atx350 andL:

either s3i
~a!5pi

0~a!~x1 ,x2 ,t ! or ui
~a! prescribed atx350,

(8)
either s3i

~a!5pi
L~a!~x1 ,x2 ,t ! or ui

~a! prescribed atx35L,

wherepi
0 andpi

L ( i 51,2,3) are prescribed functions.
~g! Initial conditions:

ui
~a! and u̇i

~a! prescribed att50. (9)

The objective of the subsequent analysis is to derive a se
one-dimensional equations whose solutions can be utilized to
proximate the solution of the problem defined by~a!–~g!. To this
end, a dynamic extension of Reissner’s mixed variational p
ciple for displacements and transverse stresses will be devel
for heterogeneous beams. In beam problems, transverse str
are stress components excluding axial normal stress, i.e.,s i j ,
( i , j )Þ(3,3). Transverse stress components appear in the trac
conditions on the cross section,~5!–~7!. In what follows, the
transverse stresses will be denoted by a superscriptt ass i j

t .

Reissner’s Semi-Complementary Energy Function
In heterogeneous beams, axial normal stress experiences

continuity at material interfaces. In the mixed variational form
lation by Reissner@17#, trial stress fields are required even whe
they are discontinuous. However, it is extremely difficult to co
struct trial fields for the discontinuous stresses encountered in
erogeneous beams and plates. To improve this situation, Reis
@14# proposed a semi-complementary energy function for pl
problems. Reissner’s semi-complementary energy function of
an attractive mixed variational formulation in which trial stress
are required only for transverse stresses but not for discontinu
axial normal stress. In this section, a semi-complementary en
function is derived for beam problems in which all stress com
nents except axial normal stress become transverse stressess i j

t .
For notational simplicity, superscripts for materiala ~51,2,3! will
not be shown in this section. In order to incorporate the const
tive relations of transverse stresses, Reissner augmented
strain-energy density functionU(ei j ) with the transverse strain
displacement relations:

PR[U~ei j !1 (
~ i , j !Þ~3,3!

s i j
t H 1

2
~ui , j1uj ,i !2ei j

t J , (10)

whereei j
t denotes transverse strains and

s i j 5
]U

]ei j
. (11)

The strain energy density function is decomposed as

U~ei j !5Ua~e33!1Ut~ei j
t ,e33!. (12)

Substituting~12! into ~10!, we obtain
Transactions of the ASME
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PR5Ua~e33!1 (
~ i , j !Þ~3,3!

1

2
~ui , j1uj ,i !s i j

t 2Ũt~s i j
t ,e33!,

(13a)

where a partial Legendre transformation

Ũt~s i j
t ,e33![ (

~ i , j !Þ~3,3!
ei j

t s i j
t 2Ut~ei j

t ,e33! (13b)

was performed to switch independent variables from transv
strainsei j

t to transverse stressess i j
t . In Reissner’s mixed varia-

tional principle, the strain-displacement relatione33[u3,3 is
treated as a constraint condition. Since the above transformati
complicated for beam problems, the functionalPR is modified by
using the complementary energy density functionWc that is ob-
tained from the full Legendre transformation

Wc~s i j ![ei j s i j 2U~ei j !, (14)

where

ei j 5
]Wc

]s i j
. (15)

Rewriting ~10! with ~14!, one obtains

PR5e33s331 (
~ i , j !Þ~3,3!

1

2
~ui , j1uj ,i !s i j

t 2Wc~s i j
t ,s33!.

(16)

Reissner’s semi-complementary energy function is now define

WR~s i j
t ,e33![Wc~s i j

t ,s33!2e33s33, (17)

where a partial Legendre transformation was performed to sw
independent variables froms31 to e33. From ~15! the function
furnishes the constitutive relations in semi-inverted form:

ei j
t 5

]WR

]s i j
t , (18a)

s3352
]WR

]e33
. (18b)

The augmented strain-energy density function with~16! and
~17! becomes

PR5 (
~ i , j !Þ~3,3!

1

2
~ui , j1uj ,i !s i j

t 2WR~s i j
t ,u3,3!, (19)

where the constraint conditione33[u3,3 was used. In what fol-
lows, Eq.~17! is applied to monoclinic materials defined by~3c!.

The partial Legendre transformation in~17! can be easily per-
formed by using the constitutive equation fore33 ([u3,3) in ~3c!
to solve fors33. This is given by

s33~s i j
t ,e33!5

e33

D33
2@D139 D239 0 0 D369 #$s t%, (20a)

where

Di39 [
Di3

D33
, i , j 51,2,6, (20b)

$s t%
T[@s11 s22 s23 s31 s12#, (20c)

and$ %T denotes the transpose of$ %.
In matrix form dWR is expressed with~18! as

dWR5 bds11 ds22 2de33 ds23 ds31 ds12c@D8#$sR%
(21a)

where

$sR%T[@s11 s22 e33 s23 s31 s12#, (21b)

and @D8# is the semi-inverted matrix directly obtained from~3c!
by using~20a,b!:
Journal of Applied Mechanics
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$eR%5@D8#$sR%. (22a)

In expanded form

5
e11

e22

s33

2e23

2e31

2e12

6 53
D118 D128 D139 0 0 D168

D128 D228 D239 0 0 D268

2D139 2D239 1/D33 0 0 2D369

0 0 0 D44 D45 0

0 0 0 D45 D55 0

D168 D268 D369 0 0 D668

4
35

s11

s22

e33

s23

s31

s12

6 , (22b)

wheree33[u3,3 and

Di j8 [Di j 2
Di3D3 j

D33
, i , j 51,2,6. (22c)

In Hamilton’s principle, the augmented strain-energy dens
function ~19! will be used instead of the strain-energy dens
function ~11!.

Hamilton-Type Principle and Derivation of Beam Equa-
tions

In order to construct a dynamic extension of the mixed var
tional principle for displacements and transverse stresses, Ha
ton’s principle is employed with the augmented strain-energy d
sity function for two arbitrary timest1 and t2 (.t1),

dE
t1

t2H E0

LF E E
V

H (
~ i , j !Þ~3,3!

1

2
~ui , j1uj ,i !s i j

t 2WR~s i j
t ,u3,3!

2rbiui2
r

2
u̇i u̇iJ dx1 dx22 R

]Vo

piui dsGdx3

2E E
V

@pi
L~x1 ,x2 ,t !ui~x1 ,x2 ,L,t !

2pi
0~x1 ,x2 ,t !ui~x1 ,x2,0,t !#dx1 dx2J dt50, (23a)

where all variations are assumed to vanish att1 and t2 ,

dui5ds i j
t 50 at t5t1 and t2 , (23b)

and if displacements are prescribed atx350 and L as described in
~8!, the corresponding virtual displacements vanish.

Recasting Eq.~23a! in the form of the principle of virtual work
gives
DECEMBER 2000, Vol. 67 Õ 673
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LH E E
V

F (
~ i , j !Þ~3,3!

1

2
s i j

t ~dui , j1duj ,i !

2
]WR

]u3,3
du3,32r~bi2üi !dui

1 (
~ i , j !Þ~3,3!

H 1

2
~ui , j1uj ,i !2

]WR

]s i j
t J ds i j

t Gdx1 dx2

2 R
]Vo

pidui dsJ dx3

2E E
V

$pi
L~x1 ,x2 ,t !dui~x1 ,x2 ,L,t !

2pi
0~x1 ,x2 ,t !dui~x1 ,x2,0,t !%dx1 dx250. (24)

It can be shown that for admissible displacements which sat
the displacement end conditions~8! the Euler-Lagrange equation
of ~24! consist, as they should, of the system~2! with ~18b! or
~20a!, ~18a! with ~4!, and the traction boundary conditions~7!
and ~8!.

In order to derive a system of one-dimensional equations fr
~24!, one must obtain approximate displacement and transv
stress fields. In the next section, a scheme is presented for
structing both trial displacement and transverse stress fields b
upon asymptotic expansion. The asymptotic analysis furnish
displacement trial field of the form

u1~x1 ,x2 ,x3 ,t !

'U1~x3 ,t !2C3~x3 ,t !x21F~x3 ,t !û1~1!~x1 ,x2!1¯

(25a)

u2~x1 ,x2 ,x3 ,t !

'U2~x3 ,t !1C3~x3 ,t !x11F~x3 ,t !û2~1!~x1 ,x2!1¯

(25b)

u3~x1 ,x2 ,x3 ,t !'U3~x3 ,t !2C2~x3 ,t !x11C1~x3 ,t !x2

1D3~x3 ,t !û3~2!~x1 ,x2!1¯ (25c)

whereUi denotes the average displacement over the cross sec
The C i-terms represent the rotational degrees-of-freedom of
cross section. TheUi and C i-terms are employed for the kine
matic description of elementary theories. The remaining te
with F andD3 describe the in-plane displacement field due to
axial strain U3,3 and longitudinal warping, respectively. Th
F-displacement modeûi (1) will be computed from the solution o
a generalized plane-strain problem over the cross section, w
the D3-displacement modeû3(2) describes the longitudinal warp
ing obtained from an antiplane problem. The trial transverse st
field will be presented after introducing the micro-boundary va
problems over the cross section.

In ~25! the higher-order terms are constructed to be orthogo
to lower-order terms with respect an integration over the cr
section. Among possible schemes, the orthogonality with res
to the integration weighted by mass densityr simplifies the ki-
netic energy expression. To this end, thex1 and x2-axes are se-
lected to be centroidal axes with respect to the mass-weig
integration over the cross section:

E E
V

rx1 dx1 dx25E E
V

rx2 dx1 dx250. (26)
674 Õ Vol. 67, DECEMBER 2000
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It is assumed that cross sections are symmetric with respect to
x1 and x2-axes.~In order to treat nonsymmetric cross section
one must carefully define the centers of shear and twist for n
symmetric cross sections.!

By substituting a trial displacement field into~24!, one-
dimensional equations of any order can be obtained. From
displacement variables shown in~25!, the resulting variational
equation becomes

E
0

L

$~dU1,32dC2!N11~dU2,31dC1!N21dU3,3N3
I 1dD3,3N3

II

1dFHI1dF ,3H
II 1dD3HIII 1dC1,3M11dC2,3M2

1dC3,3M32dU1m~B12Ü1!2dU2m~B22Ü2!

2dU3m~B32Ü3!1dFJpF̈1dD3JdD̈31dC1J1C̈1

1dC2J2C̈21dC3J3C̈32dU1P1
I 2dU2P2

I 2dU3P3
I

2dFPp
II 2dD3P3

III 2dC1P1
II 2dC2P2

II 2dC3P3
II %dx3

1BC terms50, (27)

where the BC terms include the virtual work due to the end for
at x350 andL.

In ~27! the stress variables are defined as

@N1 N2 N3
I N3

II #[E E
V

@s31 s32 s33 û3~2!s33#dx1 dx2 ,

(28a)

@M1 M2 M3#[E E
V

@x2s33 2x1s33 ~x1s322x2s31!#

3dx1 dx2 , (28b)

HI[E E
V

$û1~1!,1s111û2~1!,2s221~ û1~1!,21û2~1!,1!s12%dx1 dx2 ,

(28c)

@HII HIII #[E E
V

@ û1~1!s311û2~1!s32

3û3~2!,1s311û3~2!,2s32#dx1 dx2 , (28d)

the mass variables are

@m J1 J2 J3#[E E
V

@1 x2
2 x1

2 x1
21x2

2#r dx1 dx2 ,

(29a)

@Jp Jd#[E E @ û1~1!
2 1û2~1!

2 û3~2!
2 #r dx1 dx2 , (29b)

and the force variables are defined as

Bi[
1

m E E
V

rbi dx1 dx2 , Pi
I[ R

]Vo

pi ds, (30a)

@P1
II P2

II P3
II #[ R

]Vo

@x2p3 2x1p3 x1p22x2p1#ds,

(30b)

@Pp
II P3

III #[ R
]Vo

@ û1~1!p11û2~1!p2 û3~2!p3#ds. (30c)

The Euler-Lagrange equations of~27! yield for 0,x3,L,
Transactions of the ASME
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N1,31P1
I 1mB12mÜ150, (31a)

N2,31P2
I 1mB22mÜ250, (31b)

N3,3,
I 1P3

I 1mB32mÜ350, (31c)

N3,3
II 2HIII 1P3

III 2JdD̈350, (31d)

H ,3
II 2HI1Pp

II 2JpF̈50, (31e)

M1,32N21P1
II 2J1C̈150, (31f)

M2,31N11P2
II 2J2C̈250, (31g)

M3,31P3
II 2J3C̈350, (31h)

with boundary conditions atx350 andL:

Ui or Ni prescribed for i 51,2 at x350 and L,
(32a)

U3 or N3
I prescribed atx350 and L, (32b)

D3 or N3
II prescribed atx350 and L, (32c)

F or HII prescribed atx350 and L, (32d)

C i or Mi prescribed for i 51,2,3 at x350 and L.
(32e)

It is noted in~31! that the acceleration terms are uncoupled d
to the use of mass-weighted orthogonalization of displacem
over the cross section. The substitution of the trial transve
stress field into the remaining terms of~24!:

E E
V

(
~ i , j !Þ~3,3!

H 1

2
~ui , j1uj ,i !2

]WR

]s i j
t J ds i j

t dx1 dx250

(33)

furnishes several one-dimensional constitutive relations. The
tem of equations,~31! and ~32!, furnishes a Timoshenko-typ
model for flexural motion and a Mindlin-Herrmann-type mod
for longitudinal motion. For flexural wave motion, a Rayleig
type model can be obtained from~27! by eliminating the trans-
verse shear strains with

C152U2,3, C25U1,3. (34a)

Furthermore, by neglecting the rotary inertia effect, the Eu
Bernoulli equations are obtained. For longitudinal wave motion
Love-Rayleigh-type model can be obtained from~27! by using

F5U3,3, D350. (34b)

In what follows, the trial displacement and transverse str
fields are constructed from asymptotic analyses.

Asymptotic Analyses
To begin, both independent and dependent variables are no

mensionalized by using the following quantities:

L the length of the beam or a typical signal
wavelength

d the diameter of the cross section
E(2), r (2) Young’s modulus and mass density of

material 2
C0

(2)[AE(2)/r (2) the bar velocity of material 2
t (m)[L/C0

(2) a typical signal travel time
«[d/L the ratio of cross section to axial dimension

Using the above notation, nondimensional variables identi
by overbars are introduced according to
Journal of Applied Mechanics
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@ x̄1* x̄2* x̄3#[Fx1

d

x2

d

x3

L G , ūi[
ui

d
, t̄[

t

t ~m!
,

(35)

@C̄i jmns̄ i j #[
1

E~2! @Ci jmn s i j #, r̄[
r

r~2! .

Field variables are now considered to be functions ofx̄3 , t̄ , and
microcoordinatesx̄1* and x̄2* @18,19#. In the beam model for elas
tic wave motion, the body forcebi and lateral tractionpi will be
neglected in the construction of displacement modes over
cross section.

Using these nondimensional variables, Eqs.~2!–~4! become

1

«
~s̄1i ,1*

~a!
1s̄2i ,2*

~a! !1s̄3i ,3
~a! 5 r̄ ~a!uJ i

~a! , (36)

where ( ),i* []( )/] x̄i* and (•)[]( )/] t̄ .
The inverse of~3e! using ~4! furnishes in compact notation

$s̄%~a!5@C̄#~a!$e~ ū!%~a!, (37a)

where

$e~ ū!%T[
1

«
@ ū1,1* ū2,2* «ū3,3 «ū2,31ū3,2* ū3,1*

1«ū1,3 ū1,2* 1ū2,1* #. (37b)

The continuity and boundary conditions~5!–~8! are also ex-
pressed in nondimensional form. From the premise that the di
eter of cross sectiond is much smaller than the axial lengthL,«
!1, one expands the dependent variables in an asymptotic se

ūi
~a!~ x̄1* ,x̄2* ,x̄3 , t̄ !'ūi ~0!

~a! ~ x̄1* ,x̄2* ,x̄3 , t̄ !1«ūi ~1!
~a! ~ x̄1* ,x̄2* ,x̄3 , t̄ !

1«2ūi ~2!
~a! ~ x̄1* ,x̄2* ,x̄3 , t̄ !1¯ , (38a)

s̄ i j
~a!~ x̄1* ,x̄2* ,x̄3 , t̄ !'s̄ i j ~0!

~a! ~ x̃1* ,x̄2* ,x̄3 , t̄ !1«s̄ i j ~1!
~a! ~ x̄1* ,x̄2* ,x̄3 , t̄ !

1s̄ i j ~2!
~a! ~ x̄1* ,x̄2* ,x̄3 , t̄ !1¯ . (38b)

In ~38a! higher-order displacement terms are constructed to
orthogonal to lower-order terms with respect to the integrat
weighted by mass density over the cross section. Substituting~38!
into ~36!, ~37!, and the nondimensional form of~5!–~8!, and set-
ting each coefficient having the power of« to zero, one obtains a
system of micro-boundary value problems~MBVP’s! defined on
the cross sectionV̄:

O~«21!: s̄1i ~0!,1*
~a!

1s̄2i ~0!,2*
~a!

50, (39)

@C̄#~a!$e~21!%
~a!5$0%, (40a)

where$0% is a 631 zero column matrix and

$e~21!%
~a!T

[@ ū1~0!,1* ū2~0!,2* 0 ū3~0!,2* ū3~0!,1* ū1~0!,2*

1ū2~0!,1* #~a!. (40b)

O(«k) for k50,1,2, . . . :

s̄1i ~k11!,1*
~a!

1s̄2i ~k11!,2*
~a!

1s̄3i ~k!,3
~a! 5 r̄ ~a!ǖi ~k!

~a! , (41)

$s̄~k!%
~a!5@C̄#~a!$e~k!%

~a!, (42a)

where

$s̄~k!%
~a!T

[@s̄11~k! s̄22~k! s̄33~k! s̄23~k! s̄31~k! s̄12~k!#
~a!,

(42b)

$e~k!%
~a!T

[@ ū1~k11!,1* ū2~k11!,2* ū3~k!,3 ū2~k!,3

1ū3~k11!,2* ū3~k11!,1* 1ū1~k!,3 ū1~k11!,2*

1ū2~k11!,1* #~a!. (42c)
DECEMBER 2000, Vol. 67 Õ 675
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The continuity of displacement and traction vectors at mate
interfaces,~5! and ~6!, becomes

ūi ~k!
~1! 5ūi ~k!

~2! , s̄ j i ~k!
~1! nj

~1!5s̄ j i ~k!
~2! nj

~1! on ]V̄m
~1! , (43)

ūi ~k!
~2! 5ūi ~k!

~3! , s̄ j i ~k!
~2! nj

~2!5s̄ j i ~k!
~3! nj

~2! on ]V̄o
~2! . (44)

The traction-free condition~7! on the exterior surface]V̄o is

s̄ j i ~k!
~3! nj

~3!50 on ]V̄o . (45)

Due to the positive definiteness of@C̄#, Eq. ~40a! reduces to

$e~21!%
~a!5$0%. (46)

By imposing the boundary conditions~43!–~45! on ~46! and as-
suming that the rigid-body motion in the cross sectionV̄ is O(«),
one findsūi (0)

(a) independent ofx̄1* and x̄2* :

ūi ~0!
~a! 5ūi ~0!~ x̄3 , t̄ !. (47)

The rigid-body mode in thex̄1* andx̄2* -plane describes torsiona
deformation:

ū1~1!
~a! 52C̄3~ x̄3 , t̄ !x̄2* , ū2~1!

~a! 5C̄3~ x̄3 , t̄ !x̄1* , (48)

whereC̄3 represents the angle of twist.
The subsequent boundary value problems forūi (k11)

(a) , k

50,1,2, . . . , defined over the cross sectionV̄ consist of:~i! in-
plane problems and~ii ! antiplane problems. The in-plane prob
lems are defined as

s̄1i ~k!,1*
~a!

1s̄2i ~k!,2*
~a!

5 f̄ i ~k!
~a! for i 51,2 in V̄~a!, (49)

H s̄11~k!

s̄22~k!

s̄33~k!

s̄12~k!

J ~a!

5F C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄13 C̄23 C̄36

C̄16 C̄26 C̄66

G ~a!

3H u1~k11!,1*
u2~k11!,2*

u1~k11!,2* 1u2~k11!,1*
J ~a!

15
C̄13

C̄23

C̄33

C̄36

6
~a!

ḡ33~k!
~a! in V~a!, (50)

where f̄ i (k)
(a) andg33(k)

(a) are forcing terms consisting of the deriva
tives of lower-order displacements:

f̄ i ~0!
~a! [0, f̄ i ~k!

~a! [r̄~a!ǖi ~k21!
~a! 2s̄3i ~k21!,3

~a! for k51,2, . . . ,
(51)

ḡ33~k!
~a! [ū3~k!,3

~a! for k50,1,2, . . . . (52)

At material interfaces, the continuity conditions are expressed
~43!, ~44!, and~45! for k11 andi 51,2.

The antiplane problems are defined as

s̄13~k!,1*
~a!

1s̄23~k!,2*
~a!

5 f̄ 3~k!
~a! in V̄~a!, (53)

H s̄23~k!

s̄31~k!
J ~a!

5F C̄44 C̄45

C̄45 C̄55
G ~a!H ū3~k11!,2* 1ḡ23~k!

ū3~k11!,1* 1ḡ31~k!
J ~a!

in V̄~a!,

(54)

where f̄ 3(k)
(a) has been defined in~51! for i 53 andḡ23(k)

(a) andḡ31(k)
(a)

are forcing terms
676 Õ Vol. 67, DECEMBER 2000
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ḡ23~k!
~a! [ū2~k!,3

~a! , ḡ31~k!
~a! [ū1~k!,3

~a! . (55)

The solutions of the above problems furnish the warp
ū3(k11)

(a) of the cross section. The corresponding boundary con
tions are~43!–~45! for i 53. Since the solution for each MBVP i
unique up to a constant field, the orthogonality ofūi (k11)

(a) to the
lower-order displacements with respect to the integrat
weighted by mass density over the cross section is imposed.

In order to solve~49! and~50! or ~53! and~54! for ūi (k11)
(a) , one

must impose the integrability condition:

(
a51

3 E E
V̄~a!

f̄ i ~k!
~a! dx̄1* dx̄2* 50, (56)

which is a global statement of the traction-free condition~45!.
The antiplane problem~53! and~54! with k50 is defined with

the forcing terms

f̄ 3~0!
~a! [0, ḡ23~0!

~a! [ū2~0!,3, ḡ31~0!
~a! [ū1~0!,3 . (57)

The solution yields pure bending modes

ū3~1!
~a! 52ū2~0!,3~ x̄3 , t̄ !x̄2* 2ū1~0!,3~ x̄3 , t̄ !x̄1* , (58a)

s̄23~0!
~a! 5s̄31~0!

~a! 50. (58b)

The pure bending displacement field~58a! has been incorporated
in the trial displacement field~25c! throughC i ( i 51,2).

The remaining MBVP’s are induced by eitherūi (0) or C̄3 . By
utilizing the superposition principle for linear problems, one c
consider independently:~i! the torsional deformation due toC̄3 ,
~ii ! the pure bending and flexural deformation induced byū1(0)
andū2(0) , and~iii ! the longitudinal deformation excited byū3(0) .

Constitutive Relation for Torsional Deformation

For the torsional mode, MBVP’s are generated byC̄3 . The
antiplane problem~MBVP1!, ~53! and~54! with k51, gives Saint
Venant’s torsion problem for heterogeneous cross sections.
forcing terms are obtained from~51!, ~55!, and~48! as

f̄ 3~1!
~a! 50, ḡ23~1!

~a! 5C̄3,3x̄1* , ḡ31~1!
~a! 52C̄3,3x̄2* . (59)

To solve MBVP1 the torsional warping field is expressed in t
form

ū3~2!
~a! 5C̄3,3~ x̄3 , t̄ !ũ3~2!

~a! ~ x̄1* ,x̄2* !, (60a)

@s̄23~1! s̄31~1!#
~a!5C̄3,3~ x̄3 , t̄ !@s̃23~1! s̃31~1!#

~a!~ x̄1* ,x̄2* !.
(60b)

The above Saint Venant torsion problem~MBVP1! can be cast in
a variational form for finite element analyses as

Table 1 Material properties of steel and concrete

Steel~1! Concrete~2!

E 210 GPa 21 GPa
G 80.8 GPa 9.1 GPa
n 0.3 0.15
r 7800 kg/m3 2300 kg/m3

Table 2 Material properties for the carbon Õepoxy layer

EL ET GLT nLT nTT r

148 GPa 9.65 GPa 4.55 GPa 0.3 0.3 1500 kg/m3
Transactions of the ASME
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Fig. 2 „a… A contour plot of torsional warping ũ 3„2…
„a… for the circular cross section, „b… a contour

plot of torsional warping ũ 3„2…
„a… for the square cross section
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a51

3 E E
V̄~a!

~dũ3~2!,2*
~a! s̃23~1!

~a! 1dũ3~2!,1*
~a! s̃31~1!

~a! !dx̄1* dx̄2* 50.

(61)

The circular and square cross sections, shown in Fig. 1, w
discretized into four-node quadrilateral elements. Due to the s
metry of cross sections with respect tox̄1* andx̄2* -axes, a mesh for
only one quadrant is needed. Material properties are show
Tables 1 and 2. The details of the cross sections will be defe
to the section on numerical results.

For the circular cross section, the torsional warpingũ3(2)
(a) is

shown in Fig. 2~a!. Had this been a homogeneous circular cro
section, no warping would have occurred~@20,21#!. Figure 2~b!
illustrates the contours of the torsional warping for the squ
cross section. The considerable amount of warping observe
Fig. 2~b! could be approximated by that for the homogeneo
square cross-section of concrete.

The trial displacement field for torsional deformation is o
tained from~25a,b! as

u1
~a!52C3~x3 ,t !x2 , u2

~a!5C3~x3 ,t !x1 , u3
~a!50. (62)

By incorporating the torsional warping effect, a trial transver
stress field is constructed in dimensional form as

s11
~a!5s22

~a!5s12
~a!50,

(63)

@s23 s31#
~a!5Qa~x3 ,t !@s̃23~1! s̃31~1!#

~a!~x1 ,x2!,

whereQa(x3 ,t) is a stress variable. From~63! the torqueM3 as
defined in~28b! is expressed in terms of the stress variableQa as

M3~x3 ,t !5qaQa~x3 ,t !, (64a)

whereqa is the constant

qa[(
a51

3 E E
V~a!

~x1s̃23~1!
~a! 2x2s̃31~1!

~a! !dx1 dx2 . (64b)

In the above, by taking advantage of Reissner’s mixed variatio
principle, the torsional warping is neglected in the trial displa
ment field~to avoid an additional beam displacement variable a
the corresponding equation of motion!. However, the torsiona
warping effect is included in the trial shear stress field to ac
rately predict the torsional rigidity.

The torsional constitutive relation is obtained from~33! with
~62! and ~63!:

(
a51

3 E E
V~a!

@ds23
~a!$C3,3x12~D44

~a!s23
~a!1D45

~a!s31
~a!!%

1ds31
~a!$2C3,3x22~D45

~a!s23
~a!1D55

~a!s31
~a!!%#dx1 dx2

5dQa~qaC3,32qbQa!50, (65a)

whereqb is the constant:

qb[(
a51

3 E E
V~a!

@ s̃23~1! s̃31~1!#
~a!FD44 D45

D45 D55
G ~a!

3H s̃23~1!

s̃31~1!
J ~a!

dx1 dx2 . (65b)

As a result, the constitutive relation for the torque becomes

M35K00C3,35
qa

2

qb
C3,3. (66)
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If the elementary torsion theory were used~without incorporat-
ing the torsional warping!, the errors in torsional rigidity would
have been approximately 20 percent for circular cross sect
and 40 percent for square cross sections~@22#!.

Constitutive Relations for Flexural Deformation
MBVP’s for pure bending and flexural modes are generated

ū1(0) andū2(0) in ~47!. In what follows, only the MBVP’s induced
by ū1(0) are presented. The in-plane problem defined by~49! and
~50! with k50 yields a trivial deformation field,ui (1)

(a) 50 (i
51,2), due to the lack of forcing terms, while the problem wi
k51 furnishes MBVP2 forū1(2)

(a) andū2(2)
(a) . The forcing terms for

MBVP2 are obtained from~51! and ~52! with ~58a,b! as

f̄ 1~1!
~a! 5 r̄ ~a!uJ 1~0! , f̄ 2~1!

~a! 50, (67a)

ḡ33~1!
~a! 52ū~0!,33x̄1* . (67b)

The integrability condition~56! yields

uJ 1~0!50. (67c)

The solution of MBVP2 yields in-plane displacements for pu
bending:

ūi ~2!
~a! 5ū1~0!,33~ x̄3 , t̄ !ûi ~2!

~a! ~ x̄1* ,x̄2* !, i 51,2, (68a)

@s̄11~1! s̄22~1! s̄33~1! s̄12~1!#
~a!

5ū1~0!,33~ x̄3 , t̄ !@ŝ11~1! ŝ22~1! ŝ33~1! ŝ12~1!#
~a!~ x̄1* ,x̄2* !.

(68b)

For homogeneous isotropic cross sections,ŝ33(1) becomes pro-
portional to x̄1* , ŝ11(1)5ŝ22(1)5ŝ12(1)50, and û1(2) and û2(2)

are, respectively, proportional to (x̄1*
22 x̄2*

2)/2 and x̄1* x̄2*
~@20,21#!. For the reinforced concrete cross sections with a
without composite layers, the finite element solution of MBVP
shows that the stress and displacement fields can be approxim
with good accuracy by those for homogeneous isotropic cr
sections.

The solution of the antiplane problem~53! and ~54! with k
51 is a trivial field. A nontrivial stress field is obtained from th
antiplane problem withk52 ~MBVP3!. The forcing terms of
MBVP3 come from~51!, ~55!, ~58a!, ~67c!, and~68a,b!:

f̄ 3~2!
~a! 52ū1~0!,333ŝ33~1!

~a! , (69a)

ḡ23~2!
~a! 5ū1~0!,333û2~2!

~a! , ḡ31~2!
~a! 5ū1~0!,333û1~2!

~a! . (69b)

The integrability condition~56! for i 53 is automatically satis-
fied. The deformation field for the flexural warping is expressed
the form

ū3~3!
~a! 5ū1~0!,333û3~3!

~a! ~ x̄1* ,x̄2* !, (70a)

@s̄23~2! s̄31~2!#
~a!5ū1~0!,333@ŝ23~2! ŝ31~2!#

~a!~ x̄1* ,x̄2* !.
(70b)

MBVP3 for û3(3)
(a) is known as Saint Venant’s flexure proble

~@20,21#!. Contour plots of the flexural warpingû3(3)
(a) are shown in

Figs. 3~a! and 3~b! for the circular and square cross section
respectively.~The contour plots are drawn on deformed cross s
tions.! Due to the forcing termŝ33(1)

(a) in ~69a!, that is almost
proportional tox̄1* , the flexural warpingû3(3)

(a) is dominated by the
x̄1*

3-contribution.~The warping fields for the cross sections wit
out composite layers are similar to the fields in Figs. 3~a! and
3~b!. Comparisons of the contours in Figs. 3~a! and 3~b! with
those for the homogeneous cross sections reveal that the he
geneity induces only minute changes in warping. Therefore, in
construction of high-order beam models~without using Reissner’s
Transactions of the ASME
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Fig. 3 „a… A contour plot of flexural warping û 3„3…
„a… for the circular cross section, „b… a contour

plot of flexural warping û 3„3…
„a… for the square cross section
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semi-complementary energy function!, the above result justifies
the use of a cubic-polynomial approximation for the ax
displacement.

The trial displacement field is obtained from~25! as

u1
~a!5U1~x3 ,t !, u2

~a!50, u3
~a!52C2~x3 ,t !x1 . (71)

By utilizing the stress fields defined by~68! and~70!, a trial trans-
verse stress field is constructed in dimensional form for flexu
deformation as

@s11 s22 s12#
~a!5Sb~x3 ,t !@ŝ11~1! ŝ22~1! ŝ12~1!#

~a!~x1 ,x2!,
(72a)

@s23 s31#
~a!5Qc~x3 ,t !@ŝ23~2! ŝ31~2!#

~a!~x1 ,x2!, (72b)

whereSb(x3 ,t) andQc(x3 ,t) are stress variables.
The stress variablesN1 andM2 as defined in~28a,b! are com-

puted by using~72! and the semi-inverted constitutive relatio
~22b! for s33 together with~71! as follows:

N15q1cQ
c, (73a)

M25q1dC2,31q1eS
b, (73b)

where

q1c[(
a51

3 E E
V~a!

ŝ31~2!
~a! dx1 dx2 , (73c)

q1d[(
a51

3 E E
V~a!

x1
2

D33
~a! dx1 dx2 , (73d)

q1e[(
a51

3 E E
V~a!

x1~D139
~a!ŝ11~1!

~a! 1D239
~a!ŝ22~1!

~a!

1D369
~a!ŝ12~1!

~a! !dx1 dx2 . (73e)

Substitution of~72! into ~33! gives

dSb~q1eC2,32q1 fS
b!1dQc$q1c~U1,32C2!2q1gQc%50,

(74a)

where the constantq1 f is defined as

q1 f[(
a51

3 E E
V~a!

H ŝ11~1!

ŝ22~1!

ŝ12~1!

J ~a!TF D118 D128 D168

D128 D228 D268

D168 D268 D668
G ~a!

3H ŝ11~1!

ŝ22~1!

ŝ12~1!

J ~a!

dx1 dx2 , (74b)

and the constantq1g is obtained from~65b! by substitutingŝ23(2)
(a)

and ŝ31(2)
(a) for s̃23(1)

(a) and s̃31(1)
(a) .

For arbitrary variations ofSb andQc-the following relations are
obtained:

q1eC2,32q1fS
b50, (75a)

q1gQc5q1c~U1,32C2!. (75b)

By solving ~75a,b! for Sb andQc and substituting the result into
~73a, b!, the following constitutive relations are obtained:

N15K11~U1,32C2!, (76a)

M25K99C2,3, (76b)

where

@K11 K99#[Fq1c
2

q1g
q1d1

q1e
2

q1 f
G . (76c)
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The constitutive relations forN2 and M1 can also be obtained
in a similar manner:

N25K22~U2,31C1!, (77a)

M15K88C1,3. (77b)

Equations~76a! and~77a! incorporate the shear correction facto
associated with the Timoshenko beam theory~@23,24#!.

Constitutive Relations for Longitudinal Deformation
The longitudinal mode is generated byū3(0) in ~47!. The first

problem is a generalized plane-strain problem~MBVP4! for ūi (1)
(a)

( i 51,2) defined by~49! and~50! for k50 with the forcing terms
ū3(0),3 independent ofx̄1* and x̄2* .

f̄ i ~0!
~a! 50, ḡ33~0!

~a! 5ū3~0!,3 . (78)

The rigid-body mode of MBVP4 has already been accounted
as the torsional deformation mode in~48!. The solution of
MBVP4 is expressed as

ūi ~1!
~a! 5ū3~0!,3~ x̄3 , t̄ !ûi ~1!

~a! ~ x̄1* ,x̄2* !, i 51,2, (79a)

@s̄11~0! s̄22~0! s̄33~0! s̄12~0!#
~a!

5ū3~0!,3~ x̄3 , t̄ !@ŝ11~0! ŝ22~0! ŝ33~0! ŝ12~0!#
~a!~ x̄1* ,x̄2* !.

(79b)

For homogeneous beamsûi (1) ( i 51,2) describes the deforma
tion field due to Poisson’s lateral contraction or expansion and
corresponding stresses become

ŝ11~0!5ŝ22~0!5ŝ12~0!50, ŝ33~0!5Ē.

For circular cross section with and without composite layers,
merical results show that the displacement fieldûi (1)

(a) ( i 51,2) is
almost identical to that for the homogeneous circular cross s
tions and is proportional tox̄i* . For the square cross section with
out the composite layers,ûi (1)

(a) ( i 51,2) is also proportional tox̄i* .
However, for the square cross section with the composite la
shown in Fig. 4, the contours ofûi (1)

(a) deviate considerably from
vertical lines that indicate the proportionality tox̄1* . This devia-
tion from x̄1* is due to the constraint by the exterior compos
layer on the Poisson contraction.

The trial displacement field employed for longitudinal deform
tion is in dimensional form:

u1
~a!5F~x3 ,t !û1~1!

~a! ~x1 ,x2!, u2
~a!5F~x3 ,t !û2~1!

~a! ~x1 ,x2!,
(80)

u3
~a!5U3~x3 ,t !1D3~x3 ,t !û3~2!

~a! ~x1 ,x2!.

The trial transverse stress field is expressed through stress
ablesSa, Sc, Qb, andQd as

@s11 s22 s12#
~a!5Sa~x3 ,t !@ŝ11~0! ŝ22~0! ŝ12~0!#

~a!~x1 ,x2!

1Sc~x3 ,t !@ŝ11~2! ŝ22~2! ŝ12~2!#
~a!~x1 ,x2!,

(81a)

@s23 s31#
~a!5Qb~x3 ,t !@ŝ23~1! ŝ31~1!#

~a!~x1 ,x2!

1Qd~x3 ,t !@ŝ23~3! ŝ31~3!#
~a!~x1 ,x2!.

(81b)

The displacement mode associated withF in ~80! and the trans-
verse stress mode associated withSa in ~81a! have been defined in
MBVP4. The longitudinal warpingû3(2)

(a) associated withD3 and
the corresponding shear stressesŝ23(1)

(a) and ŝ31(1)
(a) represented by

Qb are obtained from the solution of MBVP5 defined by~55! and
~56! for k51. The integrability condition~56! for i 53 yields the
elementary rod equation
Transactions of the ASME
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Fig. 4 A contour plot of û 1„1…
„a… for the square cross section
h

o
-

e

h

s

e

s of

nd

m-

been
rod

el is

ve
Ē~m!Āū3~0!,332m̄uJ 3~0!50, (82a)

where

@Ā m̄ Ē~m!Ā#[(
a51

3 E E
V̄~a!

@1 r̄ ~a! ŝ33~0!
~a! #dx̄1* dx̄2* ,

(82b)

in which Ā, m̄, andĒ(m) are, respectively, the total area, the ma
per unit axial length, and the effective Young modulus of t
cross section.

The forcing terms for MBVP5 become

f̄ 3~1!
~a! 5S Ē~m!r̄ ~a!

Ā

m̄
2ŝ33~0!

~a! D ū3~0!,33, (83a)

ḡ23~1!
~a! 5ū3~0!,33û2~1!

~a! , ḡ31~1!
~a! 5ū3~0!,33û1~1!

~a! . (83b)

Figures 5~a! and 5~b! show the contour plots of the longitudina
warpingû3(2)

(a) for the heterogeneous circular and rectangular cr
sections. The longitudinal warpingû3(2) for the homogeneous cir
cular cross section can be found analytically to be proportiona
(2x̄1*

212x̄2*
221)/4. The corresponding contours ofû3(2) become

concentric circles. The contours ofû3(2) for homogeneous squar
cross sections are also approximated by concentric circles. Th
fore, reinforcing bars alter the warping field moderately for t
circular cross section in Fig. 5~a! and significantly for the square
cross section in Fig. 5~b!.

The solutions of MBVP4 and MBVP5 are sufficient for th
construction of a Love-Rayleigh-type rod model for heterog
neous beams with the constraints~34b! ~@25#!. In this paper, to
capture the longitudinal wave dispersion, a Mindlin-Herrman
type model is developed in~80! and ~81!. The transverse stres
modeŝ i j (2)

(a) ( i , j 51,2) associated withSc is defined by~49! and
~50! with k52. The mode is excited byū3(0),333 ~MBVP6!. The
ied Mechanics
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l
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integrability condition for MBVP6 is automatically satisfied. Th
transverse shear stress modeŝ j 3(3)

(a) ( j 51,2) associated withQd

results from the antiplane problem forū3(4)
(a) ~MBVP7! defined by

~53! and~54! with k53. ~The antiplane problem withk52 yields
ū3(3)

(a) 50.!
The constitutive relations forN3

I , N3
II , HI , HII , and HIII are

now obtained in two steps. First they are expressed in term
stress variablesSs and Qs as well asU3,3 and D3,3 by using
~28a,b,c,d! and~22b! for s33 with ~81!. Next the use of~33! with
~80! and ~81! yields the relation between the stress variables a
strain variables:U3,3, D3,3, F, F3 , andD3 . The resulting con-
stitutive relations become

H N3
I

N3
II

HI
J 5F K33 K34 K35

K34 K44 K45

K35 K45 K55

G H U3,3

D3,3

F
J , (84)

H HII

HIII J 5FK66 K67

K67 K77
G HF ,3

D3
J . (85)

The derivation of the beam constitutive relations is now co
plete. They are~66!, ~76!, ~77!, ~84!, and~85!.

Phase Velocity Spectra of the Heterogeneous Beam
Model

The phase velocity spectra of the fundamental modes have
used to assess the accuracy of one-dimensional beam and
models for wave propagation~@6,7#!. In this section, the derivation
of the phase velocity spectra of the heterogeneous beam mod
briefly described.

The displacements are written in the form of a harmonic wa
mode propagating in thex3-direction with the wave numberj
DECEMBER 2000, Vol. 67 Õ 681
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Fig. 5 „a… A contour plot of longitudinal warping û 3„2…
„a… for the circular cross section, „b… a

contour plot of longitudinal warping û 3„2…
„a… for the square cross section
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~[2p/wave length! and angular frequencyv. For longitudinal
wave motion the following harmonic waveform is assumed:

@U3 D3 F#5expA21~jx32vt !bÛ3 D̂3 F̂ c. (86)

The substitution of~86! into ~31c–e! for free vibration rewritten in
terms of displacements via~84! and ~85! yields an eigenvalue
problem for a given wave numberj:

Fmv22j2K33 2j2K34 2j2K35

2j2K34 Jdv22K772j2K44 j2~K672K45!

2j2K35 j2~K672K45! j2~Jpv22K552j2K66!
G

3H Û3

D̂3

F̂
J 5H 0

0
0
J . (87)

Phase velocityCp and group velocityCg are obtained fromj
andv as ~@10#!

Cp5
v

j
, Cg5

dv

dj
. (88)

The characteristic Eq.~87! can be solved to findCp for a givenj
by using a symbolic manipulator such as Mathematica.

For circular and square cross sections, it suffices to conside
flexural motion only in thex1 , x3-plane due to the double sym
metry. A harmonic flexural wave is considered in the form

@U1 C2#5expA21~jx32vt !bÛ1 A21jĈ2c. (89)

Substitution of~89! into ~31a! and ~31g! rewritten in terms of
displacements via~76! yields an eigenvalue problem where on
finds vs for a givenj:

Fig. 6 „a… Longitudinal phase velocity spectra for the beam
with the circular cross section, „b… longitudinal phase velocity
spectra for the beam with the square cross section
Journal of Applied Mechanics
the
-

e

Fmv22j2K11 j2K11

j2K11 j2~J2v22K112j2K99!
G H Û1

Ĉ2
J 5 H0

0J . (90)

For torsional motion one substitutes

C35Ĉ3 expA21~jx32vt ! (91)

into ~31h! rewritten with ~66! and finds that the phase velocity
independent of the wave number~nondispersive!:

Cp5AK00

J3
. (92)

In the next section the predicted phase velocity spectra c
puted from~87!, ~90!, and ~92! will be compared to numerically
obtained velocity spectra by using three-dimensional se
analytical method~@11#!.

Numerical Results
The columns considered in the above MBVP’s have exte

composite layers and circular and square cross sections of e
area. The diameter of the circular cross section is 500 mm. E
column is reinforced longitudinally by 12 steel bars of diame
25 mm. The circular cross section has its bars arranged per
cally every 30 degrees on a radius of 192.5 mm. For the colu
with the square cross section, longitudinal bars are arranged
per face as shown in Fig. 1. The material properties used for
calculations are shown in Table 1. The exterior composite la
has a thickness of 12.5 mm and is made of unidirectional carb
epoxy composite with fibers in the circumferential direction. T
material properties of the carbon/epoxy layer are shown in Ta
2. The MBVP’s were solved numerically by developing the fin
element code that was validated by solving Saint Venent’s pr
lems for circular cross sections~@20,21#!.

Figures 6~a! and 6~b! show the longitudinal phase velocit
spectra for the columns with circular and square cross secti

Fig. 7 „a… Flexural phase velocity spectra for the beam with
the circular cross section, „b… flexural phase velocity spectra
for the beam with the square cross section
DECEMBER 2000, Vol. 67 Õ 683
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respectively. In these figures solid lines represent predicti
made by the Mindlin-Herrmann-type equation~87!, while dashed
lines show the exact phase velocity spectra obtained numeric
by using the finite element waveguide analyses~@11#!. The
Mindlin-Herrmann-type rod model predicts dispersion of longi
dinal waves unlike the nondispersive elementary rod mo
shown by a dash-dotted line. In the figure the phase velocity s
tra predicted by the Love-Rayleigh-type model are also shown
fine dotted lines. The Love-Rayleigh-type model predicts o
minute dispersion due to the small Poisson’s ratio of concr
0.15.

Figures 7~a! and 7~b! show the flexural phase velocity spect
for the beam with circular and square cross sections. The p
velocity spectra predicted by the Timoshenko-type beam mo
~90! are almost identical to the spectra obtained from the fin
element waveguide analyses~@11#! shown by dashed lines. In th
figures the predictions of the elementary Euler-Bernoulli the
and the Rayleigh theory are also plotted by dash-dotted and
dotted lines, respectively.

Figures 8~a! and 8~b! include torsional phase velocity spect
for the beams with circular and square cross sections. The
dicted phase velocity spectra based upon~92! shown by solid lines
are extremely close to the spectra computed by using the fi
element waveguide analyses~@22#!. Since the torsional rigidity in
~66! incorporates torsional warping effect, Eq.~92! accurately pre-
dicts the wave speed in the long wavelength range.

Conclusions
By making a dynamic extension of Reissner’s mixed variatio

equation, a one-dimensional beam model with a displacement

Fig. 8 „a… Torsional phase velocity spectra for the beam with
the circular cross section, „b… torsional phase velocity spectra
for the beam with the square cross section
684 Õ Vol. 67, DECEMBER 2000
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stress microstructure was developed for heterogeneous be
with uniform cross sections. Trial displacement and transve
stress fields were constructed from the solutions of the MBV
defined over beam cross sections. Saint Venant’s semi-inv
torsion and flexure problems for heterogeneous cross sec
were included in the system of MBVP’s. Unlike elementary bea
theories, the heterogeneous beam model accurately predicts
dispersion. Therefore, the proposed beam theory furnishes an
nomical, yet accurate, one-dimensional model including the st
concentration around reinforcing bars and the effect of compo
retrofitting for dynamic reinforced-concrete frame analyses.
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Asymptotic Stability Analysis for
Sheet Metal Forming—Part I:
Theory
In this paper is presented a general methodology for predicting puckering instabilitie
sheet metal forming applications. A novel approach is introduced which does not use
theory approximations. The starting point is Hill’s stability functional for a thre
dimensional rate-independent stressed solid which is modified for contact. By us
multiple scale asymptotic technique with respect to the small dimensionless thic
parameter«, one can derive the two-dimensional version of the stability functional wh
is accurate up to O~«4!, thus taking into account bending effects. Loss of positive d
niteness of this functional indicates possibility of a puckering instability in a sheet m
forming problem with a known stress and deformation state. An advantage of the
posed method is that the puckering investigation is independent of the algorithm us
calculating the deformed state of the sheet.@S0021-8936~00!00804-7#
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1 Introduction and Motivation
Stamping of sheet metal is one of the most widely used ind

trial manufacturing processes. There are three major problems
limit the formability of a stamped part which have to be accoun
for in its design: springback, tearing, and puckering/wrinklin
Springback is the change in shape of the part that occurs af
part is removed from the blankholder/die assembly and is du
the elastic unloading of the part. Tearing is the splitting of the p
in areas of high strain concentrations and is due to the local
necking of the sheet. Puckering, as defined by Devons@1# is a
waviness of the sheet that is not in contact with the tooling s
faces and is a bifurcation buckling phenomenon due to the p
ence of compressive in-plane stresses in the sheet. When the
phenomenon occurs in areas that come into contact with the
ing, usually the flat part of the binder, the surface waviness p
nomena is known as wrinkling.

In modeling a tearing problem, the difficulty is in the determ
nation of the proper constitutive law since the phenomenon
local in nature. The difficulty in modeling springback is due to t
geometry of the part and in the determination of its prestress s
from which an elastic unloading takes place. Modeling of pu
ering requires both an accurate description of the constitutive
havior of the material and the solution of a boundary value pr
lem. Moreover, experimental investigation of puckering faces
difficulty of the determination of the onset of the phenomen
since imperfections in the form of minute amounts of surfa
waviness are always present in stamped parts.

Of interest here is the modeling of puckering instabilities
general stamping geometries. The standard approach thus far
a shell-type analysis~usually in conjunction with a finite elemen
method code! and follows the deformation of the part all the wa
to the formation of finite amplitude wrinkles~e.g., Taylor et al.
@2#!. More refined analyses use a linearized stability method
check for bifurcation in a part with a known prestress state
tained by using a shell-type analysis~e.g., Neal and Tugcu@3#!.
The obvious shortcoming of this approach is the stability resu
dependence on the shell theory employed.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
24, 1999; final revision, Jan. 30, 2000. Associate Technical Editor: S. Kyriaki
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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To overcome the inconsistencies associated with the use
particular shell theory to calculate the onset of bifurcation in sh
buckling problems, Triantafyllidis and Kwon@4# proposed revers-
ing the order of the limiting process in the analysis, by first fo
mulating the stability problem of the three-dimensional solid a
then finding its critical load and buckling mode as the dimensi
less thickness parameter,«, goes to zero. This asymptotic meth
odology has recently been applied by Scherzinger and Trianta
lidis @5# to another similar problem, namely the buckling
slender beams with arbitrary cross sections~there the« parameter
is the beam’s slenderness defined as the square root of its
tional area over its length! where the interested reader can fin
another comprehensive application of the proposed methodol

The departing point for our analysis is Hill’s@6,7# stability
functional for a three-dimensional elastoplastic solid, prope
modified to account for contact with tooling surfaces. Since s
bility against puckering depends on the sign of the functiona
minimum eigenvalue, the present work consists of a multiple sc
asymptotic analysis to obtain the minimum eigenvalue and
corresponding eigenmode in terms of«. The multiple scale analy-
sis is a finite strain adaptation of the methodology proposed
Destuynder@8# for the consistent derivation of linear elastic she
theories from the corresponding three-dimensional equation
elasticity. The present method results in the calculation of
stability functional of a prestressed stamped sheet that is accu
to O(«4). The functional includes bending stiffness effects a
only requires a two-dimensional stress state and eigenmode~the
degrees-of-freedom are the displacements of the midsurface!. No
shell theory assumptions are required and normality of plane
tions and the plane stress assumption arise naturally as a pa
the analysis.

The outline of this work is as follows: The presentation beg
with a description of the kinematics for a shell of arbitrary sha
in Section 2.1. The treatment of contact, essential for the stab
of sheet metal forming problems, is presented in Section 2.2
lowed by the statement of the variational problem to find t
minimum eigenvalue in Section 2.3. The asymptotic analysis
the problem is presented in Section 3. Expansion of field qua
ties are given and substituted into the stability functional. T
stability functional is evaluated in Section 3.2 and its tw
dimensional form, suitable for sheet metal forming, is found
curate to O(«4).
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2 Formulation
To begin the stability analysis for a sheet metal forming pro

lem, one starts with Hill’s@6# stability functional evaluated at a
given equilibrium state1 of a solid of volumeV and boundary]V

F~l,v!5
1

2 EV
Li jkl ~l!vk,lv i , jdV1

1

2 E]V
Kikvkv idS. (2.1)

Here l is a load parameter, which determines the current st
state and the internal variables of the solid,v i are the covariant
components of a kinematically admissible perturbation away fr
the equilibrium state,v i , j denotes the covariant derivative wit
respect to the three-dimensional basis in the current configura
Li jkl are the contravariant components of the incremental mo
that relate the rate of the first Piola-Kirchoff stress to the rate
the deformation gradient (ṖT5L :Ḟ). The second integral in~2.1!
is a penalty term that is introduced to account for the con
between the tooling surfaces and the sheet. The symmetry o
incremental moduli,Li jkl , and the contact terms,Kik, implies real
eigenvalues forF. Positive definiteness of~2.1! ensures stability
of the structure at the given equilibrium state, in the sense
positive energy has to be externally supplied into the structure
any admissible perturbation. The idea proposed in this work i
take advantage of the slenderness of the structure to devel
two-dimensional form of the stability functional which is accura
to any desired order of the slenderness parameter.

2.1 Geometric Preliminaries. Consider a shell-like struc
ture in its current configuration as shown in Fig. 1. The so
occupies a volumeV and has boundary]V consisting of the top,
bottom and lateral surfaces (]V5]V1ø]V2ø]Vn). Material
points in the shell are identified by their convected coordina
u i5(ua,u3); a material point on the midsurface of the shell h
position vectorr (ua), and the domain of the midsurface of th
sheet is denoted byA. The position vector,p, for an arbitrary
material point in the shell can be written as

p~u i !5r ~ua!1u3n~ua!, 2
h~ua!

2
<u3<

h~ua!

2
, (2.2)

wheren(ua) is the unit outward normal to the midsurface of th
shell. At the material point on the midsurface, given byua, the
thickness of the shell ish(ua).

The basis vectors for the midsurface,ai , and the three-
dimensional solid,gi , are defined as follows:

aa5
]r

]ua , a35n; gi5
]p

]u i . (2.3)

The midsurface and three-dimensional metrics are given
ai j 5ai•aj andgi j 5gi•gj with inversesai j andgi j . From~2.3! the
relation between theai basis and thegi basis is established with
the help ofm i

j ,

gi5m i
jaj ; mb

a5db
a2u3bb

a , m i
35m3

i 5d i
3,

(2.4)

ai5qi
jgj ; qi

j5~m j
i !21,

wherebb
a are the mixed components of the curvature tensor

the midsurface. The evaluation of the gradient of the perturbat
introduced in~2.1!, requires the derivatives of the midsurface b
sis vectors with respect to the convected coordinates

]ai

]u j 5t i j
k ak . (2.5)

1Here and subsequently Greek indices range from 1 to 2 and Latin indices r
from 1 to 3.
686 Õ Vol. 67, DECEMBER 2000
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Sinceaa are the basis vectors for the midsurface, the coefficie
tab
g 5gab

g are the Christoffel symbols for the midsurface. Fro
differential geometry~e.g., Goetz@9#!, the only other nonzero
components oft i j

k are

tab
3 5bab5aagbb

g , t3b
g 52bb

g . (2.6)

The components of any tensor in the subsequent analysis ca
defined with respect to the three-dimensional basis,gi , or the
midsurface basis,ai ~e.g.,v5v igi5 v̄ iai!.

2 The tensor component
in ~2.1! are referred to the three-dimensional basis; however,
following analysis naturally employs the midsurface basis. The
fore, relationships between the components of tensors referre
the two bases are needed. In particular, relationships are so
with the help of~2.4! and ~2.5!, for the components of the incre
mental moduli,L , and the gradient of the perturbation,v¹,

Li jkl 5L̄mnrsqm
i qn

j qr
kqs

l ; v i , j5S ] v̄k

]u j2tk j
l v̄ l Dm i

k5 v̄k, jm i
k .

(2.7)

2.2 Treatment of Contact. In metal forming applications,
the sheet is in contact with the rigid surfaces of the punch,
and blank holder, and this contact will constrain any kinematica
admissible perturbation,v. Therefore the effect of contact must b
accounted for in the statement of the stability problem; this
done using a penalty-type formulation.

It is assumed, without loss of generality, that contact occ
between the tooling and the bottom surface of the sheet (]V2).
Denoting the energy due to contact as

nge2Here and subsequently components of tensors with respect to the midsu
basis will be denoted with a bar surmounting the symbol, (•̄).

Fig. 1 Three-dimensional kinematics for a shell-like structure.
The midsurface is defined by the vector r while a point off the
midsurface is defined by position vector p. The covariant mid-
surface basis is a i and the covariant three-dimensional basis is
gi .
Transactions of the ASME
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1

2 E]V2

kH~D !D2dA, (2.8)

wherek is a foundation stiffness for the tooling,D(u), a function
of the displacementu, is the interpenetration distance between t
bottom surface of the sheet and the tooling surface, andH(D) is
the Heaviside step function~H(D)51 if D>0 andH(D)50 if
D,0!, the contact term for the stability functional is augment
by

1

2
~E,uudu!du5

1

2 E]V2

kH~D !~dDdD1Dd~dD !!dA,

(2.9)

where E,uu denotes the second functional derivative ofE with
respect to the displacementu. Given a parameterization of th
rigid surface in terms of the coordinatessa, the position vector for
a point on this surface is given byps5ps(s

a). The interpenetra-
tion distance between the sheet and the surface is defined a
lows ~see Fig. 2!:

D25@ps~sa!2p2~ua!#•@ps~sa!2p2~ua!#, (2.10)

wherep2(ua)5p(ua,2h(ua)/2) is the position vector of a ma
terial point on the bottom surface of the sheet that is in con
with the rigid surface. The distanceD is taken positive if there is
a penetration of the sheet on the rigid surface, i.e., whenps2p2 is
on the same direction as the outward normal to the rigid surf
ns .

Given a material pointp2(ua), for a given equilibrium state
the point on the tooling surface,ps(s

a), is sought such tha
it minimizes D. This point is found to satisfy the following
condition:

@ps~sa!2p2~ua!#•
]ps

]sb 50, (2.11)

which states that the vectorps2p2 is orthogonal to the tangen
plane of the surface at the pointps . With the above relationship
the penalty term used for modeling contact in the stability fu
tional becomes

Fig. 2 Contact between tooling surface and sheet. A point on
the sheet’s lower surface with position vector p À is at a dis-
tance D from the rigid surface. The penetration distance is
positive when p ÀÀps has the same orientation as n s , the out-
ward unit normal to the rigid surface.
Journal of Applied Mechanics
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1

2 E]V2

v•K•vdA

5
1

2 E]V2

kH~D !Fv•v2S v•
]ps

]saD S v•
]ps

]sbDcabGdA,

(2.12)

wherecab is

cab5F ]ps

]sa •

]ps

]sb 1~ps2p2!•
]2ps

]sa]sbG21

. (2.13)

Finally, it is noted that the effect of friction is seen only throug
the principal solution of the sheet metal forming process; it
assumed that friction does not affect the stability calculations

2.3 Problem Statement. Stability of the prestressed solid i
guaranteed~see Hill @6#! if the functional~2.1! is positive definite,
i.e., if its minimum eigenvalue, defined below, is positive

b5min
vPD

2F
^v,v&

. (2.14)

HereD is the space of kinematically admissible perturbations a
^v,v& is an appropriately chosen inner product. For the probl
examined here, the following choice for the inner product
adopted:

^v,v&5E
A
E

2h/2

h/2

aikv̄kv̄ idu3dA. (2.15)

The minimization problem in~2.14! can be reformulated as
variational problem

bE
A
E

2h/2

h/2

aikv̄kd v̄ idu3dA5E
A
E

2h/2

h/2

L̄ i jkl v̄k,ld v̄ i , jmdu3dA

1E
A
@K̄ ikv̄kd v̄ im#u352h/2dA.

(2.16)

In addition to the minimum eigenvalue, a mode uniquen
condition is also introduced:

^v,u&5E
A
E

2h/2

h/2

aikv̄kūidu3dA5C (2.17)

whereu andC are an appropriately chosen vector field and co
stant, respectively.

3 Asymptotics
The solution of the stability problem for a sheet metal formi

application is found using the following approach: Given an eq
librium state for the solid, an asymptotic analysis is employed
deduce a stability criterion for the shell-like structure based on
minimum eigenvalue of Hill’s functional for the three
dimensional solid. In this approach, the current geometry, st
state, and as a result, the incremental moduli are known a pr
Since the thickness is assumed to be small relative to the dim
sions of the sheet and the minimum radius of curvature of
midsurface, the asymptotic analysis is performed using the rati
the sheet thickness,h, relative to a characteristic length of th
sheet, l, as the small parameter in the problem. Denoting t
small parameter by«[h/ l , asymptotic expansions are carried o
in terms of«. The scaled thickness coordinate,j5u3/«, is also
used in the subsequent analysis and varies between2z<j<z,
wherez[h/2«.
DECEMBER 2000, Vol. 67 Õ 687
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The minimum eigenvalue and all the field quantities are
panded in a regular perturbation series in terms of«n,
n50,1,2, . . . . By taking the expansions for these quantities, su
stituting them into~2.1!, and evaluating the minimum eigenvalu
of the stability functional, the stability of the sheet metal part
examined.

3.1 Expansions. For the analysis of the stability functiona
the minimum eigenvalue, corresponding eigenmode, con
terms, and incremental moduli are expanded in a regular pe
bation series in«,

b~«!5b
0

1«b
1

1«b
2

1¯ , (3.1)

v̄ i~u j ;«!5 v̄
0

i~ua,j!1« v̄
1

i~ua,j!1«2v̄
2

i~ua,j!1¯ , (3.2)

K̄ ik~ua;«!5K̄
0

ik~ua!1«K̄
1

ik~ua!1«2K̄
2

ik~ua!1¯ , (3.3)

L̄ i jkl ~ua;«!5L̄
0

i jkl ~ua!1«L̄
1

i jkl ~ua,j!1«2L̄
2

i jkl ~ua,j!1¯ .
(3.4)

Similar expansions can be obtained for the geometric quant
m j

i and its inverseqj
i which relate the midsurface and thre

dimensional covariant basis vectors~see~2.4!!. Finally, it is noted
that the foundation stiffness for the contact term in the probl
must also be scaled with«, k→«k. In order to physically motivate
this rescaling, we recall from the theory of shells that the norm
and shear stresses are on the order of«2 and«, respectively. The
rescaling is necessary to enforce this condition as«→0. It should
also be noted at this point that the adopted asymptotic expans
for the various field quantities are expected to be valid sev
thicknesses away from the midsurface boundary. Moreover,
tacitly assumed that the corresponding boundary layer effects
inconsequential for the overall stability analysis of the structu

3.2 Evaluation of Stability Functional. Using the above
introduced rescaled expressions foru3 andk, the variational equa-
tion for the minimum eigenvalue of the stability functional
~2.16! is rewritten as

«bE
A
E

2z

z

aikv̄kd v̄ idjdA

5«E
A
E

2z

z H 1

«2 L̄ i3k3
] v̄k

]j

]d v̄ i

]j
1

1

«
~ L̄ i3kgqg

d !v̄k,d

]d v̄ i

]j

1
1

«
~ L̄ iak3qa

b!
] v̄k

]j
d v̄ i ,b1~ L̄ iakgqa

bqg
d !v̄k,dd v̄ i ,bJ mdjdA

1«E
A
@K̄ ikv̄kd v̄ im#j52zdA. (3.5)

Substituting the expansions~3.1!–~3.4! into ~3.5!, and collecting
terms of like order, the following governing equations are fou
that must be satisfied for the various orders of«.

Equations of O(«21). The lowest order governing equation
are those of O(«21), namely

E
A
E

2z

z

L̄
0

i3k3
] v̄

0

k

]j

]d v̄ i

]j
djdA50. (3.6)

Integrating by parts, and in view of the arbitrariness ofd v̄ i , the

governing differential equations and boundary conditions forv̄
0

k
are found

]
]j F L̄

0
i3k3

] v̄
0

k

]j
G50 in 2z<j<z

(3.7)
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L̄
0

i3k3
] v̄

0

k

]j
50 at j56z.

The solution of~3.7! is

L̄
0

i3k3
] v̄

0

k

]j
50, ⇒ ] v̄

0

k

]j
50. (3.8)

SinceL̄
0

i3k3 is nonsingular for all applications~the material is as-
sumed to be in the elliptic range of its response!, the solution of

~3.8! implies v̄
0

k5 v̄
0

k(u
a), which states that the lowest order ter

in the expansion of the mode is only dependent on the midsur
coordinates.

Equations of O(«0). Terms of O(«0) are collected next and
making use of~3.8!, the following governing equations are found

E
A
E

2z

z F L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,dG ]d v̄ i

]j
djdA50. (3.9)

Following the same steps as in~3.6!, we obtain the governing

differential equations and boundary conditions forv̄
1

k :

]
]j F L̄

0
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

0

k,dG50 in 2z<j<z

(3.10)

L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,d50 at j56z.

Solving ~3.10! gives the following result for] v̄
1

k /]j:

L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,d50. (3.11)

Recalling the plane stress assumption for the principal solut
t i350 andṫ i350, and the resulting orthotropy of the increme
tal moduli, the Kirchoff-Love hypothesis for the deformation
thin shells is recovered for the eigenmode

] v̄
1

a

]j
52 v̄

0

3,a . (3.12)

Equations of O(«1). The next lowest order equations are tho
of O(«1). Making use of~3.8! and~3.11!, the governing equations
of O(«1) are derived:

E
A
E

2z

z H F L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d

1 S L̄
1

i3kd1L̄
0

i3kgq
1

g
d D v̄0 k,dG ]d v̄ i

]j

1S L̄
0

ibk3
] v̄

1

k

]j
1L̄

0
ibkdv̄

0

k,dD d v̄ i ,bJ djdA

1E
A
@K̄

0
ikv̄

0

kd v̄ i #j52z dA

5b
0 E

A
E

2z

z

aikv̄
0

kd v̄ i djdA. (3.13)

From the results in~3.11!, it becomes convenient to introduce th
plane stress incremental moduli,P̄ ibkd,
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P̄ ibkd[@ L̄ iakg2L̄ iam3~ L̄n3m3!21L̄n3kg#qa
bqg

d . (3.14)

Using ~3.14! and integrating~3.13! by parts, and assuming
the thickness varies slowly throughout the sheet~i.e.,
]z/]ua5O(«n), n>2!, the following governing partial differen-
tial equations and boundary conditions are found:

]
]j F L̄

0
i3k3

] v̄
2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,dG
1

]

]ub
FP̄0 ibkdv̄

0

k,d
G1~P̄

0
ibkdtbg

g 1P̄
0

mbkdtmb
i !v̄

0

k,d1b
0
aikv̄

0

k

50 in 2z<j<z

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

5K̄
0

ikv̄
0

k at j52z

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

50 at j5z. (3.15)

Considering~3.13! with d v̄ i5d v̄ i(u
a), one finds the following

governing equations forv̄
0

i(u
a) in variational form

E
A
H P̄

0
ibkdv̄

0

k,dd v̄ i ,b1
1

2z
K̄
0

ikv̄
0

kd v̄ i J dA5b
0 E

A
aikv̄

0

kd v̄ idA,

(3.16)

while the equations for] v̄
2

k /]j are found from~3.15! and~3.16!:

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

5 f ~j!K̄
0

ikv̄
0

k , (3.17)

where f (j)[(z2j)/2z.

Equations of O(«2). The next lowest order equations are tho
of O(«2). Making use of~3.8!, ~3.11!, ~3.14!, and ~3.17!, the
governing equations of O(«2) are found:

E
A
E

2z

z H F L̄
0

i3k3
] v̄

3

k

]j
1L̄

1
i3k3

] v̄
2

k

]j
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i3k3
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0
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1
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d !v̄

1
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1

i3kgq
1

g
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0
i3kgq

2

g
d !v̄

0

k,d

1m
1

f ~j!K̄
0

ikv̄
0

kG ]d v̄ i

]j
1FP̄0 ibkdv̄

1

k,d1P̄
1

ibkdv̄
0

k,d1m
1
P̄
0

ibkdv̄
0

k,d

1 f ~j!L̄
0

ibm3~ L̄
0

n3m3!21K̄
0

nkv̄
0

k
Gd v̄ i ,bdjdA

1E
A

F~m
1

K̄
0

ikv̄
0

k1K̄
1

ikv̄
0

k1K̄
0

ikv̄
1

k!d v̄ i
G
j52z dA

5E
A
E

2z

z

aik~b
0

v̄
1

k1b
1

v̄
0

k!d v̄ idjdA. (3.18)

Choosingd v̄ i5d v̄ i(u
a), and integrating through the thicknes

gives the following equations for thej independent part ofv̄
1

i :
Journal of Applied Mechanics
se

,

E
A
H S P̄

0
ibkd^v̄

1

k,d&1^P̄
1

ibkd&v̄
0

k,d1
1

2
L̄
0

ibm3~ L̄
0

n3m3!21K̄
0

nkv̄
0

kD d v̄ i ,b

1
1

2z
F~m

1
K̄
0

ik1K̄
1

ik!v̄
0

k1K̄
0

inv̄
1

k
G
j52zd v̄ i J dA

5E
A
aik~b

0

^v̄
1

k&1b
1

v̄
0

k!d v̄ idA, (3.19)

where the thickness average of a functionf is defined as

^ f &[
1

2z E2z

z

f dj. (3.20)

With the solution of~3.19!, the mode, including first-order bend
ing terms, is determined up to order«:

v̄ i5 v̄
0

i1«~^v̄
1

i&2j~ L̄
0

n3i3!21L̄
0

n3kdv̄
0

k,d!1O~«2!. (3.21)

An expression for the stability functional, accurate to O(«3), can
be found using this form of the mode that includes bending ter

Stability Functional up to O(«3). Using the previous results
the stability functional is assembled with accuracy up to O(«3).
Starting with the following expression forF,

F5
«

2 EA
E

2z

z H L̄ i3k3
] v̄k

]j

] v̄ i

]j
1L̄ i3kgqg

d v̄k,d

] v̄ i

]j

1L̄ iak3qa
b

] v̄k

]j
v̄ i ,b1L̄ iakgqg

dqa
bv̄k,dv̄ i ,bJ mdjdA

1
«

2 EA
@K̄ ikv̄kv̄ im#j52z dA, (3.22)

making the substitutions of the expansions~3.1!–~3.4! into ~3.22!,

using~3.8!, ~3.11! and choosingd v̄ i5^v̄
2

i& in ~3.16! and invoking
the mode uniqueness condition, we find the following simplifi
expression forF:

F5
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2 EA
H E
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1
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2
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0
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1
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2
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0

k1« v̄
1

k!~ v̄
0

i1« v̄
1

i !~m
0

1«m
1

1«2m
2

!#j52z

1«2E
2z

z

@2 f ~j!K̄
0

im~ L̄
0

n3m3!21@~ L̄
1

n3kd1L̄
0

n3kgq
1

g
d

2L̄
1

n3p3~ L̄
0

q3p3!21L̄
0

q3kd!v̄
0

k,d1L̄
0

n3kdv̄
1

k,d#v̄
0

i

1~ f ~j!!2K̄
0

im~ L̄
0

n3m3!21K̄
0

nkv̄
0

kv̄
0

i #djJ dA1O~«4!. (3.23)

Examining the«3 contact terms in~3.23! it is recalled that for
adequately large values of the foundation stiffness, the m

v̄
0

i5O(«) in the areas of contact. This makes the second inte
though the thickness O(«4). In metal forming applications, the
tooling is assumed to be rigid, and thus the foundation stiffn
will be very large, and an expression for the stability function
accurate to O(«4) is found:

F5
1

2 EA
H E

2h/2

h/2

@P̄ ibkdv̂k,dv̂ i ,bm#du31@K̄ ikv̂kv̂ i #j52zJ dA

(3.24)

where the modev̂ i is given by
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v̂ i~u i !5 v̄
0

i~ua!1^v̄
1

i&~ua!

2u3~ L̄m3i3!21L̄m3kdF ] v̄
0

k~ua!

]ud
2tkd

r v̄
0

r~ua!G ,

(3.25)

and the plane stress incremental moduli,P̄ ibkd, and the contact
terms,K̄ ik, can be found to the accuracy of the prestressed s
tion.

For puckering problems in metal forming operations, the mo
of the instability is a bending mode. Whenb50, and assuming

^P̄
1

ibkd&'0, a reasonable assumption in metal forming proble

it can be shown that̂v̄
1

i&'0, i.e., the mode is a bending mod

When this is the case, thev̂ i only depends onv̄
0

i and the expres-
sion for the stability functional simplifies further.

In practice, the positive definiteness of~3.24! is determined
numerically. It is assumed that the stress state, and therefore
incremental moduli for the material, are known at any point of
loading path. For the sheet metal forming applications of inter
the load parameterl is taken to be the punch displacementH. A
stamping process is stable against puckering at a heightH, if for
all punch displacements between 0 andH the functional~3.24! is
positive definite. An application of the general theory for the c
of the hemispherical cup test is discussed in detail in Part II.

4 Conclusions
The goal of the present paper is to present a general and

sistent methodology to model puckering in sheet metal form
processes. The starting point is Hill’s three-dimensional stab
functional for rate-independent solids, appropriately modified
contact. Positive definiteness of this functional, i.e., a posit
minimum eigenvalueb, ensures the stability of the correspondin
prestressed elastoplastic solid, while the onset of buckling co
sponds to a vanishingb. The slenderness of the solid, i.e., th
dimensionless thickness parameter«!1, permits using a multiple
scale asymptotic method, the construction of a two-dimensio
stability functional which is accurate up to O(«4) and which takes
into account bending effects. The advantage here lies in the av
ance of any shell theory type approximation. The result is a c
sistently derived stability functional which is defined on t
middle surface of the sheet.
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The method is meant to be employed with the finite elem
discretization of the sheet forming problem of interest and
several advantages. It can use any equilibrium prestress to c
for the stability of the corresponding deformed state. It is parti
larly useful when a membrane solution is available, as in the c
of tearing calculations, where the present methodology also
lows a check for puckering. The stability functional is defin
independently of the algorithm used for the principal solution, a
hence one can selectively refine the mesh in those areas pro
puckering. It also providesb which is a measure of the stability o
the sheet against puckering. Since the stability functional is s
metric, the criterion forb is equivalent to the minimum diagona
entry of D in an LDU decomposition of the stiffness matrixK
which results from the finite element discretization of the stabi
functional. The application to puckering experiments for t
hemispherical cup test are presented in Part II.
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UniversityéPierre et Marie Curie, Paris.

@9# Goetz, A., 1970,Introduction to Differential Geometry, Addison-Wesley, New
York.
Transactions of the ASME



f the
tress
ibility
ticity
in
tiga-
W. Scherzinger
Sandia National Laboratories,

P.O. Box 5800, MS 0847,
Albuquerque, NM 87185

Mem. ASME

E. Chu
ALCOA Inc.,

Alcoa Technical Center,
Alcoa Center, PA 15069-0001

Mem. ASME

N. Triantafyllidis
Department of Aerospace Engineering,

The University of Michigan,
Ann Arbor, MI 48109-2140

Fellow ASME

Asymptotic Stability Analysis for
Sheet Metal Forming—Part II:
Application
The general asymptotic method proposed in Part I is applied to the investigation o
puckering instability in the hemispherical cup test. Both a membrane and a shell s
state for the principal axisymmetric solution have been considered. Due to the poss
of strong deviations from proportional loading in some cases, a corner theory of plas
is also employed, in addition to the standard J2 deformation theory which is often used
plastic buckling calculations. Results are compared to a previous experimental inves
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1 Introduction and Motivation

As an application of the general methodology of Part I,
study the puckering instability of the hemispherical cup test. T
reasons for the choice of this problem are threefold:~a! relative
analytical simplicity,~b! easy calculation of membrane and sh
prebifurcation solutions, allowing asymptotic method to be a
plied to two different prestressed states, and~c! it is an interesting
problem with reliable experimental data and a clear asymme
bifurcation away from the axisymmetric principal solution.

Although our goal is not an exhaustive, in-depth study of pu
ering per se, a few comments are in order concerning the he
spherical cup test. In addition to its practical interest as a ben
mark test for the appearance of wrinkles around corners in s
metal forming ~see Devons@1#!, the problem possesses a ve
interesting theoretical aspect~see Triantafyllidis@2#!: unlike most
plastic buckling problems that are studied, which have a prop
tional loading path~beams, plates, cylinders!, the hemispherical
cup test has large deviations from proportional loading. This f
ture has implications concerning the constitutive model tha
used. The goal here is to show the validity of the asympto
methodology presented in Part I and to compare the results fo
using a membrane theory prestress and a shell theory prestre
addition we investigate, in a systematic fashion, the influence
the constitutive theory and the friction boundary conditions.

The presentation of the work begins with the formulation of t
problem in Section 2. The kinematics for the axisymmetric pr
cipal solution are given first, followed by the stability function
for the hemispherical cup test as deduced from the general th
of Part I. Finally, a brief discussion of numerical consideratio
concludes the problem formulation. In Section 3 numerical res
based on the above derived stability functional are compare
the experimental data of Donoghue et al.@3# for the hemispherical
cup test performed on circular brass disks. The effect of sh
thickness on the loading history is examined, and as a result
effect of the choice of the constitutive theory on the critical heig
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
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is also considered. Finally, the influence of the boundary con
tions, arising from the friction between the tooling surfaces a
the sheet is also investigated.

2 Problem Formulation
The application of the general methodology of Part I to t

hemispherical cup puckering test requires the solution of the
symmetric sheet punching problem. For this solution, two ca
are considered: a membrane theory and a shell theory prest
The membrane theory is an approximate solution, while the s
theory ~see Triantafyllidis and Samanta@4#! is a consistent finite
rotation and finite strain shell theory with a more accurate p
stress.

Following the presentation of the kinematics and of the bif
cation functional for the problem at hand, there is a brief disc
sion of numerical considerations for the finite element discreti
tion of the problem and the calculation of the critical pun
height.

As mentioned in the Introduction, the choice of constituti
response is very important for plastic buckling problems. Due
nonproportional loading of the principal solution, the present s
bility calculations use the corner theory of Christoffersen a
Hutchinson@5#. This theory gives the flexibility of investigating a
range of constitutive theories from deformation theory to flo
theory.

2.1 Kinematics. The geometry of the hemispherical cup te
is shown in Fig. 1 while the kinematics for the undeformed a
deformed configurations are shown in Fig. 2. For an axisymme
sheet the convected coordinatesu i are used, whereu15s,
u25u, andu35z. The meridian for the surface of revolution tha
describes the midsurface of the sheet in the undeformed con
ration is depicted by the lineC in Fig. 2. A material point on the
midsurface is given by its position vectorR, and an arbitrary
material point, at distancez from the midsurface, is given byP

P~s,u,z!5R~s,u!1zN~s,u!, 2
h

2
<z<

h

2
, (2.1)

where N is the unit normal to the midsurface atR. During the
deformation of the initially flat sheet, a point on the midsurfa
initially at R, undergoes a displacementu and its new position on
the deformed midsurface, depicted by curveC̄ in Fig. 2, is given
by r5R1u. The position vector for an arbitrary material point,
distancez̄ from the midsurface, is given byp,

t.
es.
essor
on,
li-
000 by ASME DECEMBER 2000, Vol. 67 Õ 691
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p~s,u,z!5r ~s,u!1 z̄n~s,u!, 2
h̄~s!

2
< z̄<

h̄~s!

2
, (2.2)

wheren is the unit normal to the current midsurface atr andh̄(s)
is the current sheet thickness. The displacement,u, has compo-
nentsv(s) andw(s) along the radial and axial directions, respe
tively, i.e.,

u~s,u!5v~s!er~u!1w~s!e3; er~u!5cosue11sinue2 .
(2.3)

The basis vectors for the midsurface in the current configurat
ai , expressed in terms of the local orthonormal basis$t,n,b%, are

a15
]r

]s
5lst, a25

]r

]u
5rb, a35n, (2.4)

wheret is the unit tangent to the curveC̄, ls is the radial stretch
ratio andr is the current distance from the axis of symmet
which are found with the help of~2.1!–~2.4! to be

ls5
ds̃

ds
5F S 11

dv
dsD

2

1S dw

dsD 2G1/2

, r5s1v~s!. (2.5)

From differential geometry~e.g., Goetz@6#!, the nonzero compo-
nents of the curvature tensor for the axisymmetric midsurface

Fig. 1 Schematic drawing for hemispherical cup test

Fig. 2 Kinematics for axisymmetric shell and membrane theo-
ries. C is the meridian for the sheet in the undeformed „refer-
ence … configuration, and C̄ is the meridian for the sheet in the
deformed „current … configuration.
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c-

on,

y,

are

b1
152ks5

1

ls
2 S sinf

d2v
ds2 1cosf

d2w

ds2 D , b2
252ku52

sinf

r
(2.6)

where cosf5N•n. The nonzero Christoffel symbols for the cu
rent midsurface are found from Eq.~2.5! in Part I

t11
1 5

1

ls

dls

ds
, t12

2 5t21
2 5

1

r

dr

ds
, t22

1 52
r

ls
2

dr

ds
. (2.7)

With these kinematic quantities, the stability functional presen
in Part I can be evaluated for the axisymmetric hemispherical
test.

2.2 Stability Functional. Using the results from Part I, and
representing tensor quantities with their physical components,1 the
stability functional for an axisymmetric shell is according to E
~3.24! in Part I

F~ v̄
0

^ i & ;H !5
1

2 EA
H E

2h/2

h/2

@P̄ ^ ibkd&v̂ ^k,d&v̂ ^ i ,b&m#dz

1@K̂ ^ ik&v̂ ^k&v̂ ^ i &#u352h/2J dA, (2.8)

wherev̂ ^ i & is deduced from Eq.~3.25! of Part I under the assump

tion ^P̄
1

ibkd&'0,

v̂ ^ i &5 v̄
0

^ i &2u3~L ^m3i3&!21L ^m3kd&F ] v̄
0

^k&

]ud
2tkd

r v̄
0

^r &G , (2.9)

and the incremental moduli, appearing in~2.9! ~and in the expres-
sion for the plane stress moduliP!, are given in Triantafyllidis@2#.

For simplicity, we introduce the notationv̄
0

^1&[ū, v̄
0

^2&[ v̄ and

v̄
0

^3&[w̄. Using the kinematics from Section 2.1 in conjunctio
with ~2.9!, the plane stress assumption and the axisymmetry of
stress state, the strain rate termsv̂ ^ i , j & in ~2.8! are found to be

v̂ ^1,1&5
1

ls~11ksz̄! H ]ū

]s
2lsksw̄2 z̄S ]a

]s D J (2.10)

v̂ ^1,2&5
1

r~11ku z̄! H ]ū

]u
2 v̄ cosf2 z̄S ]a

]u
2b cosf D J (2.11)

v̂ ^2,1&5
1

ls~11ksz̄! H ] v̄
]s

2 z̄S ]b

]s D J (2.12)

v̂ ^2,2&5
1

r~11ku z̄! H ] v̄
]u

1ū cosf1w̄ sinf2 z̄S ]b

]u
1a cosf D J

(2.13)

v̂ ^3,1&5a; v̂ ^3,2&5b (2.14)

where for simplicity, the following auxiliary quantitiesa and b
have been introduced:

a[
1

ls

]w̄

]s
2ksū, b[

1

r

]w̄

]u
2kuv̄. (2.15)

Finally, it is noted that the stability functional in~2.8! can be
used with a membrane or shell prestressed state. A memb
prestress state, one with no bending stiffness, gives a stress
that is constant through the thickness of the sheet, resultin
plane stress incremental moduli that depend solely on the mid
face coordinates. On the other hand, a shell prestress state give

1The physical components of a tensor are denoted with the subscripts or s
scripts of the tensor enclosed in brackets^•&.
Transactions of the ASME
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varying stress state through the thickness of the sheet, in w
case the plane stress incremental moduli are integrated thr
the sheet thickness.

2.3 Numerical Considerations. The methodology and al
gorithm for calculating the axisymmetric principal solutions
presented in detail in Triantafyllidis@2# for the membrane mode
and Triantafyllidis and Samanta@4# for the shell model, respec
tively. The same references also contain detailed derivation
the incremental moduli for the deformation and corner theory c
stitutive models employed here. The determination of the posi
definiteness of the stability functional is done by employing
same finite element discretization used for the principal solut
The axisymmetry of the principal solution, suggests a Fourier
composition for the eigenmode

ū~s,u!5(
n50

`

@un* ~s!cos~nu!1un~s!sin~nu!#, (2.16)

v̄~s,u!5(
n50

`

@vn~s!cos~nu!1vn* ~s!sin~nu!#, (2.17)

w̄~s,u!5(
n50

`

@wn* ~s!cos~nu!1wn~s!sin~nu!#, (2.18)

where n>1 is the eigenmode’s wave number. Using~2.16!–
~2.18! and exploiting the orthogonality of the trigonometric fun
tions, the stability functional can be written as

F~ ū,v̄,w̄;H !5(
n51

`

@Fn~un~s!,vn~s!,wn~s!!

1Fn~un* ~s!,vn* ~s!,wn* ~s!!#, (2.19)

whereFn are quadratic functionals of the threes-dependent parts
of the eigenmode ~un(s),vn(s),wn(s), or equivalently of
un* (s),vn* (s),wn* (s)! and the wave numbern. By inspection of
~2.19!, it is seen that loss of positive definiteness of someFn ,
results in loss of positive definiteness ofF. Hence the stability
analysis of the two-dimensional puckering problem is reduced
the determination of positive definiteness of a one-dimensio
stability functional over a given range of wave numbersn, thus
greatly simplifying the analysis.

For assembling the stability functionalFn , we use the same
mesh as for the principal axisymmetric solution but with a line
interpolation function forū,v̄ and a Hermitian cubic interpolation
for w̄. A Cholesky decomposition of the resulting symmetric sti
ness matrixKn is used, i.e.,Kn5LnDnLn

T . For a given punch
height, the stability of the structure is examined by looking at
sign of the minimum entry in diagonal matrixDn over a large
range of integersn ~typically from 1 to 25!. The critical heightHc
is the lowest punch displacement at which this entry becom
negative for some integern.

3 Results
The goal of this section is to compare the predictions of

theory derived in Section 2 with experimental results and also
examine the accuracy of the membrane prestress simplificatio
opposed to the shell theory prestress, for the prediction of
Journal of Applied Mechanics
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critical punch height. The experimental results used in our co
parisons were performed by Donoghue et al.@3# where circular
brass blanks of four different thicknesses,h, of 0.508 mm, 0.635
mm, 0.813 mm, and 1.016 mm, were tested. In addition to vary
the sheet thickness, the tooling size and draw ratio (RL /RA) were
also varied. Results will be presented here for two tooling siz
S1 and S2 , ~shown in Table 1! and for two draw ratios
~RL /RA51.7 andRL /RA51.5!.

Experimental data for the brass uniaxial stress-strain cur
closely follow a bilinear hardening model. The initial elast
modulus isE5110 GPa. For the three thinest sheets the yi
stress issy5195 MPa and the tangent modulus isEt5812 MPa,
while for the thickest sheet,h51.016 mm, the yield stress i
sy5120 MPa, and the tangent modulus isEt5852 MPa. For the
brass experiments there was no measured plastic anisotropy i
sheets.

Considerable effort was devoted to removing the effects of f
tion in the tests reported by Donoghue et al.@3# by using teflon
sheets between the blank and the tooling, and the friction co
cient between the tooling and the sheet, while not removed
tirely, was reduced considerably. The valuem50.04 used in the
simulations reported in Donoghue et al.@3#, has also been used fo
all numerical calculations in this work.

To constrain wrinkling in the flange, a blank holder forc
~BHF! was applied to the sheet between the blank holder and
die block. Table 2 shows the blank holder forces for all of t
experimental cases examined here.

For all comparisons between the experimental and theore
results,J2 deformation theory of plasticity is used, which gives
lower bound on the critical punch height. The influence of t
constitutive response of the material is examined later. Note
all subsequent comparisons involve the critical height, which
very sensitive to the constitutive description employed. The cr
cal wave number, being determined mainly by geometry, is
ways in good agreement with experimental results, as discu
by Donoghue et al.@3# and hence is of no further concern.

For the first set of comparisons, the largest tooling (S1) is used
and the draw ratio isRL /RA51.7. The results for this case ar
shown in Table 3. For thin sheets the theoretical predictions us
both the shell and membrane theories, show good agreement
the experimental results. The percent error for the 0.508 mm s
is 2.2 percent using the shell theory and 13.7 percent with
membrane theory. As the sheet thickness increases the theor
predictions using the deformation theory grow progressiv
worse. For the 1.016-mm sheet, the shell theory result under
dicts the critical punch height by 36.5 percent, while for the me
brane theory calculation the error is 48.4 percent. The main rea
for this discrepancy lies in the large deviations from proportio
loading that occur. For the thickest sheets the deviations fr

Table 1 Tooling sizes used in Donoghue et al. †3‡

S1 S2

RP 50.00 mm 33.33 mm
RA 58.33 mm 38.87 mm
RT 10.71 mm 6.94 mm
Table 2 Blankholder force „BHF… for cases examined in experimental study by Donoghue et al. †3‡

Tooling RL ÕRA Thickness „mm… BHF „kN… Tooling RL ÕRA Thickness „mm… BHF „kN…

S1 1.7 0.508 34.637 S1 1.5 0.635 33.373
S1 1.7 0.635 33.809 S1 1.5 0.813 33.818
S1 1.7 0.813 41.227 S1 1.5 1.016 41.320
S1 1.7 1.016 41.316 S2 1.7 0.508 49.570
S1 1.5 0.508 33.168 S2 1.7 0.635 49.837
DECEMBER 2000, Vol. 67 Õ 693
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Table 4 Experimental and theoretical results using deformation theory with RL ÕRAÄ1.5 and
the S1 tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

Hc ~experimental! 13.46 mm 18.03 mm 24.38 mm 41.91 mm
Hc ~shell theory! 13.72 mm 15.81 mm 19.02 mm 24.18 mm
Hc ~membrane theory! 13.37 mm 15.37 mm 18.06 mm 22.15 mm

Table 3 Experimental and theoretical results using deformation theory with RL ÕRAÄ1.7 and
the S1 tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

Hc ~experimental! 22.86 mm 29.46 mm 36.38 mm 54.36 mm
Hc ~shell theory! 22.35 mm 25.15 mm 30.81 mm 34.54 mm
Hc ~membrane theory! 19.72 mm 21.15 mm 24.64 mm 28.05 mm
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proportional loading are larger, especially for material poi
away from the midsurface of the sheet. As a result the defor
tion theory of plasticity will not be as accurate for the thick
sheets. This point will be addressed subsequently.

Next attention is turned to experiments run with the sa
tooling as before (S1), but with a smaller draw ratio of
RL /RA51.5. The experimental and theoretical results for this c
are shown in Table 4. It is seen, as in the previous case, tha
predictions for thin sheets, usingJ2 deformation theory, are very
good, while those for thick sheets are not as accurate. For
0.508-mm sheet the percent error, using both the shell and m
brane theories, is under 2.0 percent. But as the sheet thick
increases, once again the error grows quite large. For
1.016-mm sheet the percent error is 42.3 percent for the s
theory and 47.1 percent for the membrane theory.

Results are also examined for tests run with a smaller tool
S2 , which gives higher curvatures, and a draw ratio
RL /RA51.7. These results are shown in Table 5. Here it is se
as in the previous cases, that the shell theory performs better
the membrane theory when estimating the critical punch hei
The larger curvatures in this problem, especially near the
throat, necessitate a shell theory.~Experiments using the
0.813-mm and 1.016-mm sheets were not performed by Do
ghue et al.@3#.!

The role of the constitutive theory in plastic buckling problem
is extremely important and is often the major reason for the
crepancy between theoretical buckling calculations and exp
mental observations~see review article by Hutchinson@7#!. For
most commonly studied problems, the prebuckling solution
proportional loading, and deformation theory of plasticity w
predict the instability. However, in the problem examined he
large deviations from proportional loading occur, especially
the thickest sheets. Deformation theory is inadequate when l
deviations from proportional loading occur, and as a result, i
not expected to accurately predict instabilities for thicker shee

To examine the effect of sheet thickness on the deviation fr
proportional loading, we follow the stress histories for mater
points in the unsupported region of the cup, which lie initia
near the die throat. This choice is dictated by the fact that
stress distribution in the unsupported region, has the greates
fect on the stability calculations. Presented here are the s
histories for the thinest sheet, 0.508 mm, and the thickest sh

Table 5 Experimental and theoretical results using deforma-
tion theory with RL ÕRAÄ1.5 and the S2 tooling

Thickness 0.508 mm 0.635 mm

Hc ~experimental! 34.80 mm 38.86 mm
Hc ~shell theory! 30.18 mm 31.32 mm
Hc ~membrane theory! 21.09 mm 22.23 mm
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1.016 mm, using the largest tooling and a draw ratio
RL /RA51.7. The stress history for material points in th
0.508-mm sheet, at an initial radius of 48.12 mm are shown
Fig. 3. This point in the sheet has a location in the unsuppo
region of the sheet when the punch reachesHc and the resultant
hoop force at this point is compressive. The yield surface is p
ted in s11–s22 space. Material points on the top, middle, an
bottom surface load through the elastic range, reach the y
surface, and continue loading in the plastic range. For the mid
surface there is not a strong deviation from proportional load
after yield. The top and bottom surfaces, however, do show str
deviations from proportional loading after yielding has occurre
Notice, however, that the corresponding stresses are just out o
initial yield surface.

These results are compared to the stress histories for the th
est sheet,h51.016 mm, shown in Fig. 4. Again the stress hist
ries are plotted for a material point at an initial radius of 48.
mm. Here large deviations from proportional loading are se
throughout the sheet and the stresses are now deeply into
plastic range. The stresses in the sheet are redistributed
yielding in order to sustain equilibrium, and this stress redistrib
tion is greater if the sheet is thicker, resulting in larger deviatio
from proportional loading. Nearly proportional loading is nece
sary for the accuracy of a deformation theory, and as a result,
plasticity theory chosen to model the behavior of the thinn
sheets, i.e., deformation theory, is not necessarily valid for
thicker sheets. To improve on the deformation theory, a cor
theory is employed to predict buckling.

The effect of sheet thickness on the critical punch height

Fig. 3 Stress history for material points initially at a radius of
48.12 mm for the 0.508 mm sheet. Stress history is shown for
the bottom, middle, and top surfaces of the shell.
Transactions of the ASME
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various corner theories can be seen in Fig. 5. The coefficien
friction for all the cases shown is 0.04 and the BHF is 41.316 k
These are the same boundary conditions for the case of
1.016-mm sheet with theS1 tooling and the draw ratio of
RL /RA51.7. It is recalled that this case had the largest discr
ancy between the experimental and theoretical results. The
two curves,~a! and ~b!, show the results found using the defo
mation theory of plasticity with a membrane and shell theo
respectively. Here it is seen that the bending terms and thick
distribution of the stress, both ignored in the membrane formu
tion, have the effect of raising the critical punch height. Alteri
the response of the material by changing the corner character
can further increase the critical punch height. Curves~c!, ~d!, and
~e! show the effects of different corner theories with no forwa
loading cone,u050. As the unloading cone angle,uc , approaches

Fig. 4 Stress history for material points initially at a radius of
48.12 mm for the 1.016 mm sheet. Stress history is shown for
the bottom, middle and top surfaces of the shell.

Fig. 5 Effect of sheet thickness on the critical punch height
for a brass sheet with RL ÕRAÄ1.7, the S1 tooling, BHF
Ä41.316 kN a coefficient of friction mÄ0.04. The membrane
prestress underpredicts the shell theory results for the same
constitutive relations. Using a corner theory, and varying its
corner geometry so as to approach a flow theory, the critical
punch height increases. It is noted that the BHF used for all the
numerical calculations is the experimental value correspond-
ing to the thickest blank. Experimental results are marked by
„l….
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p/2, the critical punch height increases. Flow theory is obtain
whenuc5p/2. This case is examined, but no puckering instabil
is found regardless of the sheet thickness.

Finally, the sensitivity of the results to the boundary conditio
are examined by varying the coefficient of friction between t
tooling surfaces and the sheet. The friction, combined with
BHF, supplies a restraining force on the sheet that prevents m
rial from flowing into the die. The amount of material that flow
into the die determines the compressive hoop stresses that c
puckering. Therefore, the coefficient of friction plays an importa
role in determining the critical punch height, as can be seen
Fig. 6. Once again the cases shown in Fig. 6 are variations of
case for the 1.016-mm sheet with theS1 tooling and the draw ratio
of RL /RA51.7. The blank holder force for all the cases is 41.3
kN and the coefficient of friction is varied from 0.00 to 0.16. Th
effect of the coefficient of friction is greater for the shell theori
~curves~b!–~e!! than for the membrane theory~curve~a!! as evi-
denced by the lower slope for the membrane theory curve.
effects for the different plasticity theories is the same for the sh
theories since they have similar slopes. Looking at the region n
the experimental results,m50.04, it is seen that a slight chang
say about 0.02, in the coefficient of friction can result in a chan
of up to 5 mm in the critical punch height. Therefore, it is dete
mined that the boundary conditions~the coefficient of friction and
BHF! have a very large effect on stability in the hemispheric
cup test.

4 Conclusions
The general method proposed in Part I is applied to the mo

ing of the hemispherical cup test. The goal is to check how
method performs for different sheet thicknesses and to investi
the influence of simpler~membrane! prestress states versus mo
accurate~shell! prestress states.

As expected, better agreement with experimental results is
tained for thinner sheets usingJ2 deformation theory of plasticity.
As the sheet thickness increases, so does the discrepancy be
the experimental results and the theoretical predictions. The m
reason for this discrepancy is the presence in the principal solu
of large deviations from proportional loading, which requir
more sophisticated constitutive models~corner theories! to accu-
rately predict the critical punch height.

Fig. 6 Effect of friction on the critical punch height for 1.016
mm brass sheet with RL ÕRAÄ1.7, the S1 tooling and a BHF
Ä41.316 kN. The trend in the results is the same as that seen in
Fig. 5, and it shows the great dependence of the results on the
friction boundary conditions, which are often difficult to mea-
sure. The experimental result for this case is shown by the
dashed line.
DECEMBER 2000, Vol. 67 Õ 695
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In the application at hand, the minimum eigenvalue of the s
bility functional goes through zero at the onset of bifurcatio
since a bifurcation type instability is guaranteed by the axisy
metry of the principal solution. For the general case of a nona
symmetric geometry, as for example for the punch test of non
cular blanks or blanks with some initial asymmetric imperfectio
recent calculations done by the authors show that the minim
eigenvalue will not change sign at criticality. Consequently
onset of instability is not clearly defined, although it must still
connected to the minimum eigenvalue of the stability functio
which measures the stiffness of the structure. Current work~un-
published! examines a nonaxisymmetric blank~a circular blank
with a small initial imperfection! and a square blank deformed b
a hemispherical punch and correlates the minimum eigenv
with the initial appearance of surface wrinkles.
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Modified Lagrange Method
to Analyze Problems of Sliding
and Rolling
A modified Lagrange method to analyze problems of sliding and rolling is presented
method is based on modeling the friction as a process of collisions between the s
and rolling body, and particles of the surface on which it slips and rolls. The proces
collisions does not need to describe the exact friction process. Instead it can repr
another equivalent mechanism of loss of energy of the body due to sliding and rolling
function that describes the rate of increase of the kinetic energy of the particles,
result of the collisions, plays a major roll in the modified Lagrange equations. Case
isotropic and anisotropic friction can be modeled. Three examples of using the me
are presented. It is shown that when an infinitely rough surface is assumed, the cla
equations for nonholonomic constraints of rolling without sliding are obtained. Lagra
multipliers that appear in these equations obtain direct physical meaning and the me
nism behind the constraint becomes clear.@S0021-8936~00!01404-5#
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1 Introduction
Many kinds of motion include sliding and rolling of a body o

a surface. There are many practical examples of such motions
are dealt with in many textbooks. Neimark and Fufaev@1# defined
very accurately sliding and rolling and in what follows their de
nition, that is similar to other definitions in the literature, will b
used.

Imagine that a moving bodyB is constrained to touch a fixe
surfaceS at all times. At each instant of timet, a point OB on
body B touches a pointOS of surfaceS. Actually there is a small
area of contact between the body and the surface, but when a
body and a rigid surface are considered, an ideal point conta
given.

The velocity of pointOB at the instant of time at which it is the
point of contact, lies in the common tangent plane to the mov
bodyB and surfaceS, at their point of contact. The velocityvs of
the point of contactOB relative to pointOS ~see Fig. 1!, is called
the velocity of sliding of bodyB with respect to surfaceS. Apart
from translational motion of pointOB , body B may also rotate
about pointOB with an angular velocityv̄ ~see Fig. 1!. In the case
of a rigid body, the vectorv̄ is the angular velocity of the body
with respect to the surface. It is common to expressv̄ by two
components: normal to the tangent planev̄p and a componentv̄s
parallel to the tangent plane~vp andvs denote the magnitude o
these components!. vp is called the pivoting velocity, whilevs is
the pure rolling velocity~thus the rotation ofB about the pointOB
is comprised of pure rolling and pivoting!.

Of special interest is the case of no sliding,vs50. In the litera-
ture this case is referred to in many cases as rolling, althoug
indicated above rolling can also be combined with sliding. In w
follows we will refer to this case as a motion without sliding~or
zero sliding!.

Many cases of motion without sliding of a body on a surfa
have been investigated in the literature. The demand of zero
ing velocity at the point of contact is expressed mathematically
introducing nonholonomic constraints, namely constraints that

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
29, 1999; final revision, Mar. 12, 2000. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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clude velocities. Solutions of dynamic problems that include n
holonomic constraints of zero sliding, using Lagrange meth
appear in many books on analytical mechanics. Neimark and
faev @1# have published the most detailed collection of such pr
lems and their solutions.

The author is not aware of examples in the literature of us
Lagrange method to analyze problems that include nonzero
ing. The purpose of this paper is to present a method of addres
problems of combined sliding and rolling using the Lagrange
proach. This method is based on a physical description of a
cedure of energy transfer due to sliding and pivoting. It is
sumed that the sliding body collides with particles of the surfa
and as a result of these collisions the kinetic energy of th
particles is increased. Lagrange equations are extended to inc
the effect of these collisions and the transfer of energy to th
particles. This process is described using a newly defined func
that can be looked upon as a special dissipation function for
case of sliding and rolling. The regular Lagrange equations
extended by considering not only bodyB, but also the particles
that absorb its energy. Two new kinds of dissipation function
considered that, as shown in the text, represent dry friction
viscous friction. The derivation includes cases of isotropic fricti
~where the friction force is independent of the sliding directio!,
as well as cases of anisotropic friction~where the frictional char-
acteristics change while moving in different directions!.

It should be emphasized that the collisions mechanism p
posed to describe the friction phenomenon is not by any mea
description of the actual mechanisms involved in the friction p
cess. The actual mechanisms are very complicated and very
cult to simulate. Instead the present mechanism should be con
ered as a simplified equivalent mechanism of the actual one.
model of collisions is a conceptual model that in the end, a
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Fig. 1 Definition of sliding, pivoting, and rolling
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result of using linear or quadratic dissipation functions, rep
duces results of dry or viscous friction, respectively. By us
other functions, other kinds of friction forces can be modeled

Three examples will be solved, explained, and discussed. T
cases include isotropic and anisotropic friction. Both linear a
quadratic dissipation functions will be used. It will be shown th
the zero sliding case is obtained from the more general solut
of combined sliding and rolling, if it is assumed that the surfa
~on which the body moves! exhibits infinite roughness. In suc
cases the results of the present method converge to those
appear in the literature, that has been obtained using the Lagr
multiplier approach for nonholonomic constraints.

2 The Physical Model
The main effect of sliding is the loss of energy of the bodyB,

due to friction between it and the surfaceS. Rolling is also asso-
ciated with a loss of energy, but this loss of energy is usually v
small compared to the loss of energy due to sliding. In most of
cases the loss of energy due to pivoting is larger than the los
energy due to pure rolling. Thus in what follows the loss of e
ergy due to pivoting will be included and the one due to pu
rolling will be neglected. If necessary, the small energy loss
to pure rolling can be included following the method that will b
presented for the two other mechanisms.

For ease of physical-mechanical understanding, it is assu
that there is a region of surfaceS that is responsible for the pro
cess of friction. This region includes an infinite number of ve
small identical particles that each has a massmp and an initial
velocity v l . The friction force that acts onB is a result of colli-
sions between these particles and the contact region of bodB.
Due to a collision of a certain particle, the velocity of this partic
is increased to (v l1rvs1zavp) wherer andz are always posi-
tive and greater than zero.a is a typical length of bodyB. It is
assumed that at a certain moment,Np particles collide with body
B per unit time. Thus the change of the kinetic energy of
particles per unit time, at the momentt, K f(t), is

K f~ t !5
1

2
Npmp~v l1rvs1zavp!22

1

2
Npmpv l

2

5Npmpv lFrvs1zavp1
rzavsvp

v l

1
1

2

r2vs
2

v l
1

1

2

z2a2vp
2

v l
G . (1)

In the last equationvs andvp stand forvs(t) andvp(t), respec-
tively ~these are the absolute values that are always positive!. In
general,Np is also a function ofvs andvp . Thus we can conclude
that the increase in the kinetic energy of the particles, per
time, is

K f~ t !5K f~vs~ t !,vp~ t !!. (2)

K f is a positive definite function ofvs(t) andvp(t).
In what follows two cases will be considered:
~a! K f is a linear function ofvs and vp . For convenience,

ease of physical interpretation and comparison with known res
from the literature, the linear function is written as follows:

K f 1~ t !5mBg@kvs~ t !1axvp~ t !#. (3)

mB is the mass of bodyB while g is the gravity acceleration.k and
x are nondimensional coefficients.

~b! The functionK f is a quadratic function of the sliding an
pivoting velocities:

K f 2~ t !5
1
2 @mvs~ t !21nvp~ t !2#. (4)

The factor 1/2 was introduced for convenience in the coming d
vations.m andn are dimensional positive coefficients:~N•sec/m!
and ~N•sec•m!, respectively.
698 Õ Vol. 67, DECEMBER 2000
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There are cases where the friction is not isotropic, namel
varies in different directions. There may be two kinds of anis
ropy:

~a! Anisotropy that depends on bodyB. Consider, for ex-
ample, that bodyB touches surfaceSby a small sharp wheel. The
friction in a direction that lies in the plane of the wheel is mu
smaller than the friction in a direction normal to that plane. In th
case the behavior depends on the orientation of bodyB, namely
the wheel~see the example in Section 4!.

~b! Anisotropy that depends on surfaceS. SurfaceSmay have
different friction characteristics in different directions. In th
case, anisotropy is described relative to surfaceS~see the example
in Section 5!.

In this paper, orthotropic cases of anisotropy will be conside
where the anisotropy is described by the characteristics in
orthogonal directions. These directions are defined by the
vectorsea andeb . These unit vectors are always perpendicular
each other, they lie in the tangent plane, but their orientation m
change with time and it may also be a function of the position
orientation of bodyB ~see examples in what follows!. In this case
it is convenient to expressvs by its components in the direction
ea andeb :

vs5vsaea1vsbeb . (5)

When orthotropy is considered, Eq.~3! is modified as follows:

K f 15mBg~kauvsau1kbuvsbu1axuvpu!. (6)

The absolute sign is necessary in order to make the func
K f 1 positive definite. Equation~4! becomes

K f 25
1
2 ~mavsa

2 1mbvsb
2 1nvp

2!. (7)

The coefficientska , kb , ma , andmb describe the orthotropy
Now let us turn to Lagrange method and the procedure of

taining the equations of motion. The system that is conside
here includes bodyB and all the particles that produce the frictio
mechanism. All these particles have only a kinetic energy~they do
not have any potential!, Tf :

Tf~ t !5E
0

t

K f~t!dt1
1

2
mfv l

2. (8)

mf is the total mass of the particles that participated in produc
the friction. As it will be shown later on,mf andv l do not affect
the equations directly.

The Lagrangian integrand of the entire system,L, is

L5LB1Tf (9a)

LB5TB2VB . (9b)

TB and VB are the kinetic energy and potential, respectively,
body B. If necessary, holonomic constraints can be included
adding them toL, using the Lagrange multiplier approach.

Lagrange’s equations are

d

dt S ]L

]q̇i
D2

]L

]qi
5Qi ~ i 51,2, . . .N!. (10)

qi is thei th generalized coordinate whileQi is thei th generalized
applied force.N is the number of degrees-of-freedom of the sy
tem. The collision forces are internal impulse forces of the syst

Since there are collisions between bodyB and the small par-
ticles, Lagrange’s equation will be integrated, as is commo
done in the case of impulsive motion. The integration will
carried over the time intervalt1<t<t2 , letting t2→t1 :

lim
t2→t1

E
t1

t2F d

dt S ]L

]q̇i
D2

]L

]qi
Gdt5 lim

t2→t1

E
t1

t2
Qidt. (11)

There is a discontinuous change in the momentum of the
ticles that collide with bodyB during the intervalt1<t<t2 . On
the other hand, since bodyB has a finite mass while the particle
Transactions of the ASME
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are very small, the change in the momentum of bodyB during this
time interval is assumed to be continuous. Thus if Eq.~9a! is
substituted into Eq.~11! and integration of the left side of th
equation is carried out, we obtain

lim
t2→t1

E
t1

t2F d

dt S ]L

]q̇i
D2

]L

]qi
Gdt

5F d

dt S ]TB

]q̇i
D2

]~TB2VB!

]qi
G

t5t1

Dt

1 lim
t2→t1

E
t1

t2F d

dt S ]Tf

]q̇i
D2

]Tf

]qi
Gdt (12a)

Dt5t22t1 . (12b)

The integral on the right side of Eq.~12a! includes the contribu-
tions of all the particles that collide with bodyB during the time
interval t1,t,t2 . Let us examine the contribution to this integr
of a single particle that collides with bodyB at timet, wheret1
<t<t2 . Tf of that particle is~see Eq.~1!!:

Tp~ t !5
1

Np
K f~t!•h~ t2t!1

1

2
mpv l

2. (13)

h(t2t) is the Heaviside~step! function.
Thus the generalized momentum of the particle,]Tp /]q̇i , is

]Tp

]q̇i
5

1

Np

]K f

]q̇i
U

t5t

h~ t2t! (14)

Similarly,

]Tp

]qi
5

1

Np

]K f

]qi
U

t5t

h~ t2t!. (15)

Substitution of Eqs.~14! and ~15! into the integral on the right
side of Eq.~12a! for a single particle results in

lim
t2→t1

E
t1

t2F d

dt S ]Tp

]q̇i
D2

]Tp

]qi
Gdt

5
1

Np
E

t1

t2F ]K f

]q̇i
U

t5t

d~ t2t!2
]K f

]qi
U

t5t

h~ t2t!Gdt (16)

whered(t2t) is the Dirac~impulse! function.
If K f is continuous in the interval, and sincet2→t1 , Eq. ~16!

becomes

lim
t2→t1

E
t1

t2F d

dt S ]Tp

]q̇i
D2

]Tp

]qi
Gdt5

1

Np
F ]K f

]q̇i
U

t5t1

2
]K f

]qi
U

t5t1

•j•DtG .

(17)

j takes values between zero and one (0,j<1). During the time
interval Dt the number of particles that collide with bodyB is
(Np•Dt). Therefore

lim
t2→t1

E
t1

t2F d

dt S ]Tf

]q̇i
D2

]Tf

]qi
Gdt

5~Np•Dt ! lim
t2→t1

E
t1

t2F d

dt S ]Tp

]q̇i
D2

]Tp

]qi
Gdt

5
]K f

]q̇i
U

t5t1

Dt2
]K f

]qi
U

t5t1

jDt2. (18)

It will be assumed that the applied~external! generalized forces
are continuous and do not include impulse forces. Thus the r
side of Eq.~11! becomes
Journal of Applied Mechanics
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lim
t2→t2

E
t1

t2
Qidt5Qi u t5t1

Dt. (19)

Substitution of Eq.~18! into Eq. ~12a!, and substitution of the
result and Eq.~19! into Eq. ~11!, lead to the following equation:

F d

dt S ]LB

]q̇i
D2

]LB

]qi
1

]K f

]q̇i
2j

]K f

]qi
Dt2Qi G

t5t1

Dt50. (20)

Sincet2→t1 andDt→0, we obtain the following Lagrange equa
tion for the case of sliding and rolling:

d

dt S ]LB

]q̇i
D2

]LB

]qi
1

]K f

]q̇i
5Qi 1< i<N. (21)

K f plays the role of a dissipation function, but this is a spec
dissipation function that depends on the physical variablesvs and
vp and it has a physical background based on the collision me
nism that has been assumed.

The present derivation was based on a mechanism where
energy loss of bodyB is due to collisions with particles of surfac
S. Yet, as was emphasized in the Introduction, this mechanism
not a description of the actual mechanism involved in the frict
process. Instead the present mechanism should be considere
simplified equivalent mechanism of the actual one. The mode
collisions is a conceptual model that reproduces results of var
friction mechanisms.

In what follows, Eq.~21! will be used to investigate the behav
ior of various systems that include sliding and rolling.

3 Rolling and Sliding of a Circular Disk on a Rough
Surface

The two-dimensional case of a circular disk that slides a
rolls on a horizontal rough surface is considered~see Fig. 2!. The
disk has a radiusR, its mass ismB and the moment of inertia
about its center ismBk2. A linear coordinatex and an angular
coordinateu are used to describe the disk motion.x is parallel to
the surface and passes through the disk center. In this t
dimensional problem there is no pivoting. Except for the grav
force and the friction between the disk and the surface, there
no other forces that act on it. Att50 the disk coordinates arex0
andu0 , while the initial linear and angular velocities areẋ0 and
u̇0 , respectively.

The absolute value of the sliding velocity,vs , is

vs5uẋ2Ru̇u. (22)

The kinetic energy of the disk is

TB5
1
2 mBẋ21

1
2 mBk2u̇2. (23)

Since the motion is on a horizontal surface the gravity potentia
constant and chosen equal to zero.

In what follows two cases of linear and quadraticK f functions
will be considered.

Linear Kf Function. The functionK f 1 according to Eqs.~3!
and ~22! is

K f 15mBgkuẋ2Ru̇u. (24)

The last equation can be written as

Fig. 2 A circular disk that rolls and slides on a rough surface
DECEMBER 2000, Vol. 67 Õ 699
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K f 15mBgk~ ẋ2Ru̇ !sign~ ẋ02Ru̇0! (25)

where the function sign~z! indicates the sign of variablez and
takes values 1 or21, accordingly. If in the course of the solutio
( ẋ2Ru̇) changes its sign, new initial conditions can be defin
and the solution is continued~in what follows this will be shown
as unnecessary!.

The two general coordinates in the present example arex andu.
Substitution of Eqs.~23! and ~25! into Eq. ~21! results in the
following two equations of motion:

ẍ1gk sign~ ẋ02Ru̇0!50 (26a)

k2ü2gkR sign~ ẋ02Ru̇0!50. (26b)

These equations are identical to the equations that are obta
while using Newton’s method, when dry friction is assumed.k is
then the coefficient of dry friction.

The solution of the last two equations is

x52
1

2
gk sign~ ẋ02Ru̇0!t21 ẋ0t1x0 (27a)

u5
gkR

2k2 sign~ ẋ02Ru̇0!t21 u̇0t1u0 . (27b)

The sliding velocity is~see Eq.~22!!

vs5Z~ ẋ02Ru̇0!2gkS 11
R2

k2 D sign~ ẋ02Ru̇0!tZ. (28)

It turns out that the sliding velocity decreases linearly with tim
until it becomes zero at timetR :

tR5
1

gkS 11
R2

k2 D uẋ02Ru̇0u. (29)

From this moment on the disk moves without sliding, having co
stant linear and angular velocities,ẋR and u̇R , respectively, that
are equal to the values att5tR :

ẋR5 ẋ02
1

S 11
R2

k2 D ~ ẋ02Ru̇0! (30a)

u̇R5 u̇01
R

k2S 11
R2

k2 D ~ ẋ02Ru̇0!. (30b)

Thus the complete solution to the problem is comprised of t
parts:

~a! During the interval 0<t<tR the motion is described by Eqs
~27a,27b!. At the end of this time interval (t5tR) the coordinates
of the disk arexR anduR .

~b! For tR,t a motion with constant velocitiesẋR and u̇R is
obtained~see Eqs.~30a,30b!!.

Thus in this region

x5xR1 ẋR~ t2tR! (31a)

u5uR1 u̇R~ t2tR!. (31b)

It is interesting to note that the final velocitiesẋR and u̇R are not
dependent on the friction force, but are only dependent on
initial conditions,R andk.

Quadratic Kf Function. The functionK f , according to Eq.
~4!, is

K f 25
1
2 m~ ẋ2Ru̇ !2. (32)

Substitution of Eqs.~23! and ~32! into Eq. ~21!, leads to the
following equations of motion:
700 Õ Vol. 67, DECEMBER 2000
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mBẍ1m~ ẋ2Ru̇ !50 (33a)

mBk2ü2mR~ ẋ2Ru̇ !50. (33b)

It is interesting to note that Eqs.~33a,33b! are identical to those
that are obtained after using Newton’s method, when viscous f
tion is assumed.

The solution to the last two equations is

x52
mB~ ẋ02Ru̇0!

mS 11
R2

k2 D 2 e2m~11R2/k2!t/mB1F ẋ02
~ ẋ02Ru̇0!

S 11
R2

k2 D G t1x0

1
mB~ ẋ02Ru̇0!

mS 11
R2

k2 D 2 (34a)

u52
mBR~ ẋ02Ru̇0!

mk2S 11
R2

k2 D 2 e2m~11R2/k2!t/mB1F u̇01
R~ ẋ02Ru̇0!

k2S 11
R2

k2 D G t

1u02
mBR~ ẋ02Ru̇0!

mk2S 11
R2

k2 D . (34b)

The velocitiesẋ and u̇ are obtained by differentiating the las
equations. The sliding velocity becomes

vs5uẋ2Ru̇0u5uẋ02Ru̇0ue2m~11R2/k2!t/mB. (35)

It should be noted thatvs approaches zero asymptotically, asẋ
andu̇ approach their asymptotic values. The asymptotic value
ẋ and u̇ are identical toẋR and u̇R ~see Eqs.~30a,30b!! for the
case of a linearK f .

Comment. According to Eqs.~23! and ~26a,26b! the rate of
loss of energy of bodyB, P5udTB /dtu, in the case of dry friction,
during the period 0,t,tR , is

P15mBgkuẋ2Ru̇u. (36)

Comparison of Eq.~36! with Eq. ~24! indicates that all the energy
lost by bodyB is absorbed by the particles that are responsible
the friction procedure.

In the case of viscous friction, the rate of loss of energy acco
ing to Eqs.~33a,33b! is

P25m~ ẋ2Ru̇ !2. (37)

Comparison of the last equation with Eq.~32! indicates that in this
case only half of the energy lost by bodyB, is absorbed by the
particles.

4 Caplygin’s Sleigh—A Special Case
The free motion of a solid bodyB on a horizontal rough plane

is considered. The body touches the plane at three points. The
two points of contact can slide freely on the plane in all directio
The projection of the center of mass ofB coincides with the third
point of contact of a massless rigid sharp wheel and the plane~see
Fig. 3!. This is a special case of Caplygin’s sleigh that was co
sidered by various researchers~e.g.,@1,2#!.

The kinetic energy of bodyB is

TB5
1
2 mB~ ẋ21 ẏ2!1

1
2 mBk2ẇ2 (38)

wherex andy are the planar Cartesian coordinates of the cente
mass.w is the angle between the plane of the wheel and thex-axis
~see Fig. 3!. k is the radius of gyration andmB the body mass.

The potential of bodyB is constant and thus chosen equal
zero.
Transactions of the ASME
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This is a case of orthotropic friction. Since the wheel has
sharp rigid rim, the friction along the plane of the wheel is mu
smaller than the friction normal to this plane.

As defined in Section 2,a andb indicate the orientation of the
orthotropy,a is the direction along the plane of the wheel, andb
is the direction normal to it. Ifex and ey are unit vectors in the
directions of the axesx andy, respectively, then~Fig. 3!

ea5coswex1sinwey (39a)

eb52sinwex1coswey . (39b)

The sliding velocity in this example is the velocity of the bod
center of mass, thus

vs5 ẋex1 ẏey . (40)

The components ofvs in the directionsea andeb are

vsa5 ẋ cosw1 ẏ sinw (41a)

vsb52 ẋ sinw1 ẏ cosw. (41b)

The pivoting velocity in the present case is

vp5ẇ. (42)

Linear Kf Function. According to Eq.~6!, for the present
case

K f 15mBg~kauẋ cosw1 ẏ sinwu

1kbu2 ẋ sinw1 ẏ coswu1axuẇu!

where

kb@ka ,ax. (43)

For the sake of comparison with results from the literature
solution is restricted to the cases wherekb is much larger thanka
or ax, so the last two are neglected. Then we obtain

K f 15mBgkb~2 ẋ sinw1 ẏ cosw!sign~2 ẋ sinw1 ẏ cosw!.
(44)

There are three generalized coordinates in this case (x,y,w). Sub-
stitution of Eq. ~38! into Eq. ~9b!, and then substitution of the
result into Eq.~21!, lead to the following three equations:

ẍ2gkb sinw sign~2 ẋ sinw1 ẏ cosw!50 (45a)

ÿ1gkb cosw sign~2 ẋ sinw1 ẏ cosw!50 (45b)

ẅ50. (45c)

Again, as in the previous section, it is shown that a linearK f
function leads to a dry friction force. The solution of the la
equations is

x52
gkb

ẇ0
2 @~sinw2sinw0!2ẇ0 cosw0t#

3sign~2 ẋ0 sinw01 ẏ0 cosw0!1 ẋ0t1x0 (46a)

Fig. 3 A special case of Caplygin’s sleigh
Journal of Applied Mechanics
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y5
gkb

ẇ0
2 @~cosw2cosw0!1ẇ0 sinw0t#

3sign~2 ẋ0 sinw01 ẏ0 cosw0!1 ẏ0t1y0 (46b)

w5ẇ0t1w0 . (46c)

x0 , y0 , and w0 are the initial values of the generalized coord
nates whileẋ0 , ẏ0 , andẇ0 are the values of the initial generalize
velocities.

The sliding velocity component normal to the plane of t
wheel,vSb , is

vSb5~2 ẋ sinw1 ẏ cosw!

52 ẋ0 sinw1 ẏ0 cosw

2
gkb

ẇ0
sin~w2w0!sign~2 ẋ0 sinw01 ẏ0 cosw0!. (47)

The solution~46a–46c! is correct as long asvSb does not become
zero. At the moment whenvSb becomes zero, it is not clear wha
is the magnitude of the component of the friction force normal
the plane of the wheel, nor what is the direction of this force. Y
one can examine the situation just aftervSb becomes zero. Differ-
entiating Eq.~41b! and using Eqs.~41a! and ~46c! imply

v̇Sb52vSaẇ01~2 ẍ sinw1 ÿ cosw!52vSaẇ01
F f b

m
. (48)

F f b is the component of the friction force in the directioneb .
If at the moment whenvSb50 alsoF f b50, then the sign of

vSb an instant later is defined by the sign ofvSa andẇ0 . Knowing
the sign ofvSb one can consider the conditions at that moment
initial conditions for a solution, which is identical in its form t
Eqs.~46a,46b!.

Let us consider a ‘‘more sophisticated mechanism,’’ similar
static friction, where the forceF f b ~at the moment whenvSb
becomes zero! is determined such thatvSb will be zero in what
follows, namely~see Eq.~48!!

F f b5mv tẇ0 . (49)

v t in the last equation is the magnitude of the componentvSa ~the
component in the plane of the wheel! at the moment wherevSb
becomes zero. The equations of motion become

ẍ52v tẇ0 sinw (50a)

ÿ5v tẇ0 cosw. (50b)

The solution of these equations is

x5
v t

ẇ0
~sinw2sinw t!1xt (51a)

y52
v t

ẇ0
~cosw2cosw t!1yt . (51b)

xt , yt , andw t are the coordinates at the moment whenvSb be-
comes zero.

The solution~51a,51b! is identical to the one given in the lit
erature~@1#, pp. 94–95! for a motion without sliding normal to the
wheel plane. This is a circular motion. In the literature the mec
nism that results in a motion described by these equations is n
interest. Yet, from a physical point of view, the above sophis
cated mechanism seems to be unrealistic. In what follows it w
be shown that when viscous friction is considered the phen
enon becomes more feasible and logical.

Quadratic Kf Function. Similar to the case of a linearK f
function, it will be assumed thatma and n in Eq. ~7! are very
small compared tomb , and therefore they will be neglected. Thu
we obtain
DECEMBER 2000, Vol. 67 Õ 701
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K f 25
1
2 mb~2 ẋ sinw1 ẏ cosw!2. (52)

Using Eq. ~21! the following three equations of motion ar
obtained:

ẍ2r~2 ẋ sinw1 ẏ cosw!sinw50 (53a)

ÿ1r~2 ẋ sinw1 ẏ cosw!cosw50 (53b)

ẅ50 (53c)

r5mb /m. (53d)

The solution of the above equations is~for the sake of simplic-
ity the velocities ẋ and ẏ are given, if necessary they can b
integrated to obtainx andy!

ẋ5
ẇ0

z12z2
F2S v t01

ẇ0

z2
vn0D S sinw1

ẇ0

z1
cosw De2z1t

1S v t01
ẇ0

z1
vn0D S sinw1

ẇ0

z2
cosw De2z2tG (54a)

ẏ5
ẇ0

z12z2
F S v t01

ẇ0

z2
vn0D S cosw2

ẇ0

z1
sinw De2z1t

2S v t01
ẇ0

z1
vn0D S cosw2

ẇ0

z2
sinw De2z2tG (54b)

w5ẇ0t1w0 (54c)

v t05 ẋ0 cosw01 ẏ0 sinw0 (54d)

vn052 ẋ0 sinw01 ẏ0 cosw0 (54e)

z1,25
r

2
F16A124

ẇ0
2

r2G . (54f)

v t0 andvn0 are the initial velocity components in the directionsea
and eb at t50, respectively~the components along the plane
the wheel and normal to it!.

Of special interest is the case of an infinitely rough surfa
namely

mb ,r→`. (55)

According to Eq.~54f! we obtain

z1>r→` (56a)

z2>
ẇ0

2

r
→0. (56b)

Based on the above equations

ẇ0

z12z2
>

ẇ0

r
→0 (57a)

ẇ0
2

~z12z2!z1
>

ẇ0
2

r2 →0 (57b)

ẇ0
2

~z12z2!z2
>1 (57c)

ẇ0
3

~z12z2!z1z2
>

ẇ0

r
→0 (57d)

e2z1t→0 (57e)

e2z2t→1. (57f)

Using Eqs.~57a–57f!, it turns out that for an infinitely rough
surface

ẋ>v t0 cosw (58a)
702 Õ Vol. 67, DECEMBER 2000
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ẏ>v t0 sinw (58b)

ẇ5ẇ0t1w0 . (58c)

Equations~58a–58c! describe a circular motion at a consta
angular speed, the same motion as obtained by Neimark and
faev for the nonholonomic constraint of zero sliding velocity no
mal to the plane of the wheel. Unlike the previous case of
friction, here this motion is obtained as a result of a ‘‘realistic
physical mechanism: Asr in Eqs.~53a,53b! is increased, the slid-
ing velocity during the motion, (2 ẋ sinw1ẏ cosw), is getting
smaller. At the limit

lim
r→`

~2 ẋ sinw1 ẏ cosw!50 (59a)

lim
r→`

r~2 ẋ sinw1 ẏ cosw!5l. (59b)

l is the viscous friction force normal to the wheel plane. Thus
the limit case wherer→`, the equations of motion~53a–53c!
become

ẍ2l sinw50 (60a)

ÿ1l cosw50 (60b)

ẅ50 (60c)

2 ẋ sinw1 ẏ cosw50. (60d)

These are exactly Eqs.~2.5! and ~2.6! of Neimark and Fufaev,
wherel is the Lagrange multiplier.

5 Motion of a Sphere on a Rough Surface
Consider a homogeneous sphereB of massmB , radiusa and a

radius of gyrationk. This sphere rolls on a rough horizontal fla
surfaceS that has an orthotropy of friction.

The motion of the center of the sphere is described rela
to the fixed system of coordinatesx, y, z. x and y are parallel to
the surfaceS and chosen such that they coincide with the
rections of the orthotropy. The rotation of the sphere is descri
by three Eulerian anglesw, c, and u, which are defined in
Fig. 4 ~the sequence of the rotation isc, u, andw!. From Fig. 4
it is easy to see that the vector of angular velocity of the sph
v̄, is

v̄5vxex1vyey1vzez (61)

where

vx5 u̇ cosc1ẇ sinu sinc (62a)

vy5 u̇ sinc2ẇ sinu cosc (62b)

vz5ẇ cosu1ċ. (62c)

ex , ey , ez are unit vectors in the directions of the coordinate lin
x, y, z, respectively.

The kinetic energy of the sphere is

Tb5
1
2 mB~ ẋ21 ẏ2!1

1
2 mBk2~vx

21vy
21vz

2!

5
1
2 mB~ ẋ21 ẏ2!1

1
2 mBk2~ u̇21ẇ21ċ212ẇċ cosu!. (63)

Since the surfaceS is horizontal,VB is chosen equal to zero.
The sliding velocity of the sphere on surfaceS, vS , is

vS5 ẋex1 ẏey1v̄x~2aez!5~ ẋ2avy!ex1~ ẏ1avx!ey . (64)

In the present example a quadraticK f function will be considered.
It will be assumed that the friction due to pivoting is very sm
and thus it will be neglected. According to Eq.~7!,

K f 25
1
2 @mx~ ẋ2avy!21my~ ẏ1avx!

2#. (65)
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Substitution of Eqs.~63! and~65! into Eq. ~21!, and using Eqs.
~62a–62c!, lead to the following five equations of motion~the
generalized coordinates are:x, y, u, w, andc!:

mBẍ1mx~ ẋ2avy!50 (66a)

mBÿ1my~ ẏ1avx!50 (66b)

mBk2~ ü1ẇċ sinu!2mxa~ ẋ2avy!sinc

1mya~ ẏ1avx!cosc50 (66c)

mBk2~ ẅ1c̈ cosu1ċu̇ sinu!1mxa~ ẋ2avy!sinu cosc

1mya~ ẏ1avx!sinu sinc50 (66d)

mBk2~ c̈1ẅ cosu2ẇu̇ sinu!50. (66e)

The terms inside the parenthesis in Eq.~66e! are simplyv̇z ~see
Eq. ~62c!!. Equations~66c,66d! are replaced by another two equ
tions that are obtained as follows:

~a! Equation~66d! is multiplied by cosc and subtracted from
Eq. ~66c! that is multiplied before that by~sinu sinc!. Use is
made of Eq.~66e! to eliminatec̈.

~b! Equation~66d! is multiplied by sinc, Eq. ~66c! is multi-
plied by ~sinu cosc!, both equations are added, and Eq.~66e! is
used to eliminatec̈.

The new system of five equations is

mBẍ1mx~ ẋ2avy!50 (67a)

mBÿ1my~ ẏ1avx!50 (67b)

mBk2v̇y2mxa~ ẋ2avy!50 (67c)

mBk2v̇x1mya~ ẏ1avx!50 (67d)

v̇z50. (67e)

Consider now the case of an infinitely rough surface where

mx ,my→`. (68)

In this case, similar to what was shown in the previous sectio

lim
mx→`

~ ẋ2avy!→0 (69a)

lim
my→`

~ ẏ1avx!→0 (69b)

lim
mx→`

mx~ ẋ2avy!→lx (69c)

lim
my→`

my~ ẏ1avx!→ly . (69d)

Fig. 4 Description of Euler angles. „x ,y ,z… and „j,h,z… repre-
sent a body system of coordinates before and after the rota-
tion, respectively.
Journal of Applied Mechanics
-

n,

lx and ly are newly defined variables that have finite value
The system of equations of motion for an infinitely rough surfa
becomes

mBẍ1lx50 (70a)

mBÿ1ly50 (70b)

mBk2v̇y2alx50 (70c)

mBk2v̇x1aly50 (70d)

v̇z50 (70e)

ẋ2avy50 (70f)

ẏ1avx50. (70g)

This is the same set that is obtained by the classical approac
nonholonomic constraints when one assumes rolling without s
ing of the sphere~see@1#!. lx andly are Lagrange multipliers in
this case.

6 Conclusions
An approach using Lagrange’s method to derive the equat

of motion of bodies which undergo sliding and rolling wa
presented. The method is based on modeling the friction betw
the body ~that slides and rolls! and the surface, especially th
loss of energy of the moving body, as a process of collisio
between the body and particles of the surface. As a result of th
collisions energy is transferred from the body to the particl
namely to the surface. The mechanism is defined by the func
K f that describes the rate of increase of the kinetic energy
the particles that participate in the process.K f depends on the
sliding velocity between the body and the surface and the pivo
speed. Two cases of the functionK f have been investigated: linea
and quadratic functions. It has been shown that linear functi
represent dry friction while quadratic functions represent visc
friction.

The dynamic system includes the bodyB and the particles ofS
that participate in the process. Since collisions inside the sys
~between bodyB and the particles! are considered, the Lagrang
equations of the entire system are integrated with respect to t
similar to what is done in the case of an impulse motion. Modifi
Lagrange equations are obtained that are capable of descr
motions that include simultaneous sliding and rolling. In the
equations the functionK f plays a role similar to a dissipation
function.

It should be clear that the collisions mechanism proposed
describe the friction phenomenon is not a description of the ac
mechanism involved in the friction process. Instead, the pres
mechanism should be considered as a simplified equiva
mechanism of the actual one.

Three examples of using the method have been presented
cluding isotropic friction and orthotropic friction. It has bee
shown that the case of zero sliding is obtained as a special ca
the general solution, when infinite roughness of the surface
assumed. In the case of infinite roughness, quadraticK f functions,
namely viscous friction, give equations of motion that are iden
cal to those that are obtained when nonholonomic constraint
zero sliding are applied. Lagrange multipliers that appear in th
equations, that emerge from the introduction of nonholonom
constraints, obtain a ‘‘realistic physical meaning,’’ and the mec
nism behind the phenomenon becomes clear.

The newly presented method is very general in its nature. It
accommodate other forms~not only linear or quadratic! of theK f
functions that will represent different forms of friction. Example
of other models of friction were presented by Oden and Mart
@3#, Banerjee and Kane@4#, Bauchau@5#, and others. The ex-
amples that were presented here dealt with a moving bodyB and
a stationary surfaceS. Yet, the application of the method to slid
ing and rolling between moving bodies, including more than t
DECEMBER 2000, Vol. 67 Õ 703
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bodies~multibodies! is straightforward. In the above investigatio
the ~usually! very small effect of friction due to rolling has bee
neglected. Its addition, if necessary, is also straightforward us
the technique presented above.
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On the General Solution for
Piezothermoelasticity for
Transverse Isotropy With
Application
This paper derives a general solution of the three-dimensional equations of transve
isotropic piezothermoelastic materials (crystal class, 6 mm). Two displacement func
are first introduced to simplify the basic equations and a general solution is then de
using the operator theory. For the static case, the proposed general solution is
simple in form and can be used easily in certain boundary value problems. An illustr
example is given in the paper by considering the symmetric crack problem of an arb
temperature applied over the faces of a flat crack in an infinite space. The gove
integro-differential equations of the problem are derived. It is found that exact exp
sions for the piezothermoelastic field for a penny-shaped crack subject to a un
temperature can be obtained in terms of elementary functions.@S0021-8936~00!01704-9#
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1 Introduction
Piezoelectric ceramics and composites have been extens

used in many engineering applications such as sensors, actu
intelligent structures, etc.~@1#!. The mechanics of these so-calle
smart materials thus have attracted considerable academic a
tion ~@2–6#!. Owing to the pyroelectric effect occupied by mo
piezoelectric materials~@7#!, the response characteristics m
change considerably when piezoelectric structures work in e
ronments where temperature varies notably. In order for the p
tical use of piezoelectric-based intelligent structures, a wide
thorough understanding of piezothermoelastic behaviors
required.

Most of the earlier investigations in the area of piezoth
moelasticity have considered the development of constitutive
lations as well as basic principles~@8–12#!. Since 1990, the piezo
thermoelastic behaviors of piezoelectric plates and shells h
been of intense research effort~see@13–18#, to name a few!. A
potential function method was proposed by Ashida et al.@19–22#
to effectively analyze various problems in piezothermoelastic
@23–26#. Kapuria et al. also applied the potential function meth
to investigate piezothermoelastic responses of a finite transve
isotropic cylindrical shell~@27#! and a clamped circular plat
~@28#!. However, as pointed out in Ding et al.@29#, the derivation
of the general solution presented by Ashida et al. is someh
tedious. Ding et al.@29# employed the operator theory and o
tained a general solution in simpler form for static piezoth
moelastic problems of crystal class 6 mm solids. The general
lution for dynamic piezothermoelastic problems was also obtai
recently in Ding et al.@30#. It is noted here that both the gener
solutions suggested by Ashida et al.@21,22# and Ding et al.
@29,30# include a so-called piezothermoelastic potential funct
that satisfies a nonhomogeneous sixth-order differential equa
with the nonhomogeneous term related to the temperature fi
The general solution in such a form will however bring out cert

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
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inconvenience for dealing with boundary value problems ass
ated with cracks and punches~@31#!, while great achievement ha
been developed in the potential theory~@32#!.

This paper presents a general solution for dynamic problem
transversely isotropic piezothermoelastic materials. In contras
the one obtained by Ding et al.@30#, this solution does not include
a particular part that satisfies a nonhomogeneous differential e
tion. In particular, for static problems, the general solution is
nally expressed in terms of five harmonic functions~more pre-
cisely, weighted or quasi-harmonic functions!. Such a form allows
one to use the solution feasibly to solve boundary value proble
associated with cracks and punches. In fact, utilizing this solut
the potential theory method proposed by Fabrikant@32# and gen-
eralized by Chen et al.@5,6,33# for piezoelasticity can be easily
applied to piezothermoelasticity. As an illustrative example,
stationary problem of a flat crack with its surfaces being para
to the plane of isotropy and subjected to a prescribed tempera
is considered in the paper. The governing integro-differen
equations are derived. In particular, explicit expressions for
elastic, electric, and thermal field can be obtained for the prob
that uniform temperature is applied over the faces of a pen
shaped crack. The stress intensity factor as well as the ele
displacement intensity factor are presented.

2 Basic Equations
In Cartesian coordinates (x,y,z), with the planex–y parallel to

the plane of isotropy, the constitutive relations of a transvers
isotropic piezothermoelastic medium~crystal class 6 mm! are

sx5c11

]u

]x
1c12

]v
]y

1c13

]w

]z
1e31

]F

]z
2l11u,

sy5c12

]u

]x
1c11

]v
]y

1c13

]w

]z
1e31

]F

]z
2l11u,

sz5c13S ]u

]x
1

]v
]y D1c33

]w

]z
1e33

]F

]z
2l33u,

(1)

tyz5c44S ]v
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1
]w

]y D1e15

]F

]y
,
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tzx5c44S ]u

]z
1

]w

]x D1e15

]F

]x
,

txy5c66S ]u

]y
1

]v
]xD ,

Dx5e15S ]u

]z
1

]w

]x D2e11

]F

]x
,

Dy5e15S ]v
]z

1
]w

]y D2e11

]F

]y
, (2)

Dz5e31S ]u

]x
1

]v
]y D1e33

]w

]z
2e33

]F

]z
1p3u,

whereu(v,w), Di , ands i(t i j ) are components of the mechanic
displacement, electric displacement, and normal~shear! stress, re-
spectively;F andu are the electric potential and temperature
crement, respectively;ci j , ei j , e i j , andp3 are the elastic, piezo
electric, dielectric, and pyroelectric constants, respectively;
l i j are the stress-temperature coefficients. The relationc115c12
12c66 holds for materials with transverse isotropy.

The dynamic equations of equilibrium and the electrosta
equation can be found in Tiersten@34# for example and are no
repeated here. The temperature is assumed to satisfy the Fo
heat conduction equation~@26#!

S k11D1k33

]2

]z2D u5
k11

k

]u

]t
, (3)

where D5]2/]x21]2/]y2 is the planar Laplacian,ki j are the
coefficients of heat conduction, andk denotes the therma
diffusivity.

By virtue of Eqs.~1! and ~2!, the dynamic equations of equ
librium and the electrostatic equation for transversely isotro
piezothermoelasticity can be written in terms of the mechan
displacement, the electric potential, and the temperature increm
as follows~in absence of body force and free charge density!:

S c11

]2

]x2 1c66

]2

]y2 1c44

]2

]z22r
]2

]t2Du1~c121c66!
]2v

]x]y

1~c131c44!
]2w

]x]z
1~e151e31!

]2F

]x]z
2l11

]u

]x
50,
.
a
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]2u

]x]y
1S c66
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]x2 1c11

]2

]y2 1c44

]2

]z22r
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1~c131c44!
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1~e151e31!
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(4)

~c131c44!
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]z S ]u
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1
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]y D1S c44D1c33

]2

]z22r
]2

]t2Dw

1S e15D1e33
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]z2DF2l33
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50,
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1

]v
]y D1S e15D1e33

]2

]z2Dw

2S e11D1e33
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wherer is the mass density.

3 Dynamic General Solution
Two displacement functionsc and G are introduced to repre

sent the displacement componentsu andv as follows:

u5
]c

]y
2

]G

]x
, v52

]c

]x
2

]G

]y
. (5)

By virtue of Eq.~5!, in a similar manner to that of Ding et al.@35#,
Eqs.~3! and ~4! can be transformed into the following form:

S c66D1c44

]2

]z22r
]2

]t2Dc50, (6)

DH G
w
F
u
J 5H 0

0
0
0
J , (7)

whereD is a differential operator matrix
D53
c11D1c44
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]z22r
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2~e151e31!
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]z2D e11D1e33
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]z2 2p3

]

]z

0 0 0 k11D1k33

]2

]z22
k11

k

]

]t

4 . (8)
It is seen that the displacement functionc can be solved from Eq
~6! separately. Equation~7! is a homogeneous set of differenti
equations inG, w, F, andu. The general solution can be obtaine
routinely by the operator theory as follows:

G5Ai1F, w5Ai2F, F5Ai3F, u5Ai4F, ~ i 51,2,3,4!,
(9)

whereAi j are the algebraic cominors of the matrixD, of which the
determinant is
l
d

uDu5S a
]6

]z6 1bD
]4

]z4 1cD2
]2

]z2 1dD31gD
]4

]t4

1hD2
]2

]t2 1kD
]2

]z2

]2

]t2 1 l
]4

]z4

]2

]t2 1n
]2

]z2

]4

]t4D
3S k11D1k33

]2

]z22
k11

k

]

]t D , (10)
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where a, b, c, d, g, h, k, l, and n are combinations of materia
constants that can be found in Ding et al.@35#. The functionF in
Eq. ~9! should satisfy the following homogeneous equation:

uDuF50. (11)

It can be seen immediately that if we takei 51,2,3 in Eq.~9!,
we will get three general solutions in whichu50. These solutions
are in fact identical to the ones of piezoelasticity as reported
Ding et al.@35#. Thus,i 54 should be taken in Eq.~9! for coupled
piezothermoelastic problems so that the following general s
tion of dynamic problems can be obtained:

u5
]c

]y
2A41

]F

]x
, v52

]c

]x
2A41

]F

]y
,

(12)
w5A42F, F5A43F, u5A44F,

where c and F are general solutions of Eqs.~6! and ~11!,
respectively.

Substituting the expressions ofA4 j into Eq. ~12!, the general
solution can be written in the following form:

u5
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where

a152l11~c44e111e15
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Journal of Applied Mechanics
l

in

lu-

d352p3~c111c44!2l11~e151e31!2e15l33,

f 352p3~c331c44!2e33l33.

The dynamic general solution in cylindrical coordinat
(r ,f,z) can be readily obtained from Eq.~13!. In fact, the expres-
sions forw, F, andu will keep unaltered whileu andv should be
replaced byur anduf as

ur5
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2Fa1D21b1D
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]z2 1c1

]4

]z4 1S d1D1 f 1
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]z2 1c1

]4

]z4

1S d1D1 f 1

]2

]z2D r
]2

]t2G ]F

r ]f
,

in which D5]2/]r 21]/r ]r 1]2/r 2]f2 is the planar Laplacian in
cylindrical coordinates.

It can be seen that the dynamic general solution does no
clude a particular part that satisfies a nonhomogeneous differe
equation as the one reported in Ding et al.@30#. This will bring
out certain convenience for solving practical problems. Especi
in the static case the general solution will take a form more c
veniently to be used in potential theory as shown in the followin

4 Static General Solution
For static problems, the terms associated with the time in E

~6! and ~11! should vanish. In fact, functionsc andF satisfy the
following two equations, respectively,

S D1
]2

]z0
2Dc50, (16)

S D1
]2

]z1
2D S D1

]2

]z2
2D S D1

]2

]z3
2D S D1

]2

]z4
2DF50, (17)

wherezi5siz, s05Ac66/c44, s45Ak11/k33 and si ( i 51,2,3) are
three roots of the following algebraic equation with positive re
part:

as62bs41cs22d50. (18)

Then by virtue of the generalized Almansi’ theorem verified
Ding et al.@35#, the functionF can be expressed in terms of fou
harmonic functions~more precisely, weighted or quasi-harmon
equations!

F5H F11F21F31F4 , for si ~ i 51,2,3,4! are distinct,
F11F21F31zF4 , for s1Þs2Þs35s4Þs1 ,
F11F21zF31z2F4 , for s1Þs25s35s4 ,
F11zF21z2F31z3F4 , for s15s25s35s4 ,

(19)

whereFi ( i 51,2,3,4) satisfy

S D1
]2

]zi
2DFi50, ~ i 51,2,3,4!. (20)

For the sake of simplicity, only in Eq.~19! in this paper we do not
specifys4 to the value ofAk11/k33; it is merely one of the equa
eigenvalues when the later three cases are considered.

We now proceed to consider the case of distinct eigenva
si ( i 51,2,3,4); when equal eigenvalues appear, the derivatio
similar. The general solution as shown in Eq.~13! can be thus
written in the following form for static problems:
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4 , v52

]c

]x
2(

i 51

4

b i1

]5Fi

]y]zi
4 ,

(21)
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where
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(22)

Equation~21! can be further simplified if setting

b i1

]4Fi

]zi
4 5c i , ~ i 51,2,3,4!. (23)

Utilizing Eq. ~23!, and writingc asc0 , the static general solution
will take the following simple form:

u5
]c0

]y
2(

i 51

4
]c i

]x
, v52

]c0

]x
2(

i 51

4
]c i

]y
,

(24)

w5(
i 51

4

a i1

]c i

]zi
, F5(

i 51

4

a i2

]c i

]zi
, u5(

i 51

4

a i3

]2c i

]zi
2 ,

where a i15b i2si /b i1 , a i25b i3si /b i1 , a135a235a3350, a43
5b44/b41 and

S D1
]2

]zi
2Dc i50, ~ i 50,1, . . . ,4!. (25)

In cylindrical coordinates (r ,f,z), the radial and circumferen
tial components of the mechanical displacementur anduf in the
static general solution will read

ur5
]c0

r ]f
2(

i 51

4
]c i

]r
, uf52

]c0

]r
2(

i 51

4
]c i

r ]f
(26)

and the axial component of the mechanical displacementw, the
electric potentialF, as well as the temperature incrementu, still
take the same form as given in Eq.~24!.

It is interesting to compare the present static general solu
~Eq. ~24!! with those obtained by Ashida et al.@21# and Ding
et al. @29#. Whether the problem is static or quasi-static, tota
seven potential functions~the electric potential is considered he
as a natural variable! are involved in the general solution o
Ashida et al.@21#. Basically, the static general solution of Din
et al. @29# is identical with that of Ashida et al. although rigorou
mathematical derivation was developed. Ding et al.@29# also ex-
pressed the general solution in a more concise form in which o
four harmonic functions and one particular function, which sa
fies a nonhomogeneous sixth-order partial differential equat
are involved. It is obvious that the present static general solu
expressed by five harmonic functions, as given in Eq.~24!, is
simpler than both of Ashida et al.@21# and Ding et al.@29#. More
importantly, the general solution in the present form bridges
gap between some boundary value problems usually met in p
lems associated with cracks and punches~@36#! and the potential
theory ~@32#!. The problem of a flat crack opened out by the a
plication of a prescribed temperature to its faces in an infin
piezothermoelastic space is to be considered immediately to s
the superiority of the present general solution.

For the convenience of the followed analysis, the followi
complex quantities are introduced:

U5u1 iv, s15sx1sy , s25sx2sy12i txy ,

tz5txz1 i tyz , D5Dx1 iD y .

Utilizing Eqs. ~24!, ~1!, and~2!, it is obtained that

U52LS (
i 51

4

c i1 ic0D , sz5(
i 51

4

g i1

]2c i

]zi
2 ,
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Dz5(
i 51

4

g i2

]2c i

]zi
2 ,

s15(
i 51

4

g i3

]2c i

]zi
2 , s2522c66L

2S (
i 51

4

c i1 ic0D , (27)

tz5LS (
i 51

4

v i1

]c i

]zi
2 is0c44

]c0

]z0
D ,

D5LS (
i 51

4

v i2

]c i

]zi
2 is0e15

]c0

]z0
D ,

where

g i15c131c33sia i11e33sia i22l33a i3 ,

g2i5e311e33sia i12e33sia i21p3a i3 , (28)

g i352@~c112c66!1c13sia i11e31sia i22l11a i3#,

v i152c44si1c44a i11e15a i2 , v i252e15si1e15a i12e11a i2 .

Also noted are the following two identities:

g i1si5v i1 , g i2si5v i2 . (29)

5 Application: Symmetric Crack Problem
Consider a transversely isotropic piezothermoelastic sp

weakened by a flat crackS located in the planez50, with arbi-
trary temperatureQ(x,y) applied over the upper and lower crac
faces. By virtue of the symmetric condition with respect to t
crack surface~@5,37#! the problem is equivalent to a mixed boun
ary value problem for the half-spacez>0, with the following
mixed boundary conditions on the planez50:

sz50, Dz50, u5Q~x,y!, for ~x,y!PS;

w5F5]u/]z50, for ~x,y!¹S; (30)

tz50, for 2`,~x,y!,`.

It is noted here that, in Shang et al.@31# where the problem of a
penny-shaped crack with uniform temperature surface was so
by means of potential functions and Fourier-Hankel transform
tions, the thermal condition outside the crack was taken to
u50, which turns to be not a natural condition~@38#!.

By extending the potential theory for elasticity~@32#! and for
piezoelasticity~@33#!, it is assumed that,

c050; c i~z!5hi1H1~zi !1hi2H2~zi !1hi3H3~zi !,

~ i 51,2,3,4!, (31)

wherehi j are undetermined constants, and

H1~r ,f,z!5E E
S

v~N!

R~M ,N!
dS,

H2~r ,f,z!5E E
S

w~N!

R~M ,N!
dS, (32)

H3~r ,f,z!5E E
S

q~N!$z ln@R~M ,N!1z#2R~M ,N!%dS,

in which v, w, and q stand for the crack-face displaceme
w(x,y,0), electric potentialF(x,y,0), and temperature gradien
]u(x,y,z)/]zuz50 , respectively,R(M ,N) is the distance between
the pointsM (r ,f,z) andN(r 0 ,f0,0) @hereafter, cylindrical coor-
dinates (r ,f,z) are alternatively used for the sake of conv
nience#, and the integration is taken over the crack surfaceS. In
Transactions of the ASME
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contrast to piezoelasticity~@5#!, a new potentialH3 has been in-
troduced here to account for the pyroelectric effect. To satisfy
zero-shear stress condition in Eq.~30!, one can assume

(
i 51

4

v i1hi j 50, ~ j 51,2,3!. (33)

It is shown that the property of the potential of a simple lay
immediately leads to the satisfaction of the vanishing ofw, F, and
]u/]z outside the crack, while inside the crack one has

]H1

]z U
z50

522pv522pw~x,y,0!,

]H2

]z U
z50

522pw522pF~x,y,0!, (34)

]3H3

]z3 U
z50

522pq522p
]u~x,y,z!

]z U
z50

.

The following relations then are obtained from Eqs.~24!, ~31!,
and ~34!:

(
i 51

4

a i1hi152
1

2p
, (

i 51

4

a i1hi250, (
i 51

4

a i1hi350,

(
i 51

4

a i2hi150, (
i 51

4

a i2hi252
1

2p
, (

i 51

4

a i2hi350,

(35)

(
i 51

4

a i3hi150, (
i 51

4

a i3hi250, (
i 51

4

a i3hi352
1

2p
.

Now hi j are then solved from Eqs.~33! and ~35! as follows:

H h1 j

h2 j

h3 j

h4 j

J 52
1

2p F v11 v21 v31 v41

a11 a21 a31 a41

a12 a22 a32 a42

a13 a23 a33 a43

G 21

H 0
d1 j

d2 j

d3 j

J ,

~ j 51,2,3!, (36)

whered i j is the Kronecker delta.
The satisfaction of the first condition in Eq.~30! gives the fol-

lowing integro-differential equations:

g11DE E
S

v~N!

R~N0 ,N!
dS1g12DE E

S

w~N!

R~N0 ,N!
dS

2g13E E
S

q~N!

R~N0 ,N!
dS50,

(37)

g21DE E
S

v~N!

R~N0 ,N!
dS1g22DE E

S

w~N!

R~N0 ,N!
dS

2g23E E
S

q~N!

R~N0 ,N!
dS50,

E E
S

q~N!

R~N0 ,N!
dS522pQ~N0!, (38)

where gk j5( i 51
4 g ikhi j (k51,2; j 51,2,3), R(N0 ,N) represents

the distance between two pointsN0 andN, and bothN0 , NPS.
Making use of Eq.~38!, Eq. ~37! can be written as
Journal of Applied Mechanics
the

er

~g13g222g23g12!Q~N0!52
1

4p2A
DE E

S

v~N!

R~N0 ,N!
dS,

(39)

~g11g232g21g13!Q~N0!52
1

4p2A
DE E

S

w~N!

R~N0 ,N!
dS,

(40)

whereA51/2p(g11g222g12g21). For a flat crack with an arbitrary
shape, the integral Eq.~38! and the integro-differential Eqs.~39!
and~40! generally can be solved by numerical methods. Afterv,
w, andq are known, the functionsHi can be obtained from Eq
~32! by integration and then the whole piezothermoelastic fi
can be determined.

For a penny-shaped crack, with the radius beinga0 , exact so-
lutions to Eqs.~38!, ~39!, and~40! can be obtained by using Fab
rikant’s results~@32#!. In the case when the temperature is un
formly distributed, i.e.,Q5Q05const., the solutions are

q~r ,f!52
2Q0

pAa0
22r 2

, (41)

v~r ,f!54A~g13g222g23g12!Q0Aa0
22r 2, (42)

w~r ,f!54A~g11g232g21g13!Q0Aa0
22r 2. (43)

Substituting Eqs.~41!–~43! into Eq. ~32! yields

H1~r ,f,z!52pA~g13g222g23g12!Q0F ~2a0
212z22r 2!

3sin21S a0

l 2
D2

2a0
223l 1

2

a0
Al 2

22a0
2G ,

H2~r ,f,z!52pA~g11g232g21g13!Q0F ~2a0
212z22r 2!

3sin21S a0

l 2
D2

2a0
223l 1

2

a0
Al 2

22a0
2G , (44)

H3~r ,f,z!522Q0H S z22a0
22

r 2

2 D sin21S a0

l 2
D

2
3~2a0

22 l 1
2!

2a0
Al 2

22a0
212a0z ln@ l 21Al 2

22r 2#J ,

where

l 15
1

2
$A~r 1a0!21z22A~r 2a0!21z2%,

l 25
1

2
$A~r 1a0!21z21A~r 2a0!21z2%.

Having the explicit expressions for the harmonic functio
Hi ( i 51,2,3) as shown in Eq.~44!, the piezothermoelastic field
can be obtained simply by differentiation. It is obvious that all t
resulting expressions will be in terms of elementary functio
Since the derivation is straightforward, it is omitted here to sa
the space of the paper. In order to investigate the singular be
ior of the piezothermoelastic field near the crack tip, however,
expressions forsz andDz are given as follows:
DECEMBER 2000, Vol. 67 Õ 709
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sz58pAQ0 (
i 51

4

g i1@hi1~g13g222g23g12!1hi2~g11g232g21g13!#

3Fsin21S a0

l 2i
D2

a0Al 2i
2 2a0

2

l 2i
2 2 l 1i

2 G24Q0(
i 51

4

g i1hi3 sin21S a0

l 2i
D ,

(45)

Dz58pAQ0 (
i 51

4

g i2@hi1~g13g222g23g12!1hi2~g11g232g21g13!#

3Fsin21S a0

l 2i
D2

a0Al 2i
2 2a0

2

l 2i
2 2 l 1i

2 G24Q0(
i 51

4

g i2hi3 sin21S a0

l 2i
D ,

where

l 1i5
1

2
$A~r 1a0!21zi

22A~r 2a0!21zi
2%,

l 2i5
1

2
$A~r 1a0!21zi

21A~r 2a0!21zi
2%.

If the stress and electric displacement intensity factors are defi
here in the following way,

ks5 lim
r→a0

$~r 2a0!1/2szuz50%, kD5 lim
r→a0

$~r 2a0!1/2Dzuz50%,

(46)

then from Eq.~45!, we obtain

ks522A2a0g13Q0 , kD522A2a0g23Q0 . (47)

It is then concluded that both the stress and electric displacem
intensity factors depend on material constants for thermal load
just as in the elastic case~@37#!.

6 Conclusions
A dynamic general solution is first presented for problems

transversely isotropic piezothermoelastic media by using the
erator theory. For static problems the solution is further simplifi
and expressed in terms of five quasi-harmonic functions. C
parison with that obtained by Ding et al.@29# shows that the
present general solution is simpler and can be used more co
niently. More importantly, the present solution allows one to u
feasibly the existent results in potential theory to analyze bou
ary value problems in piezothermoelasticity. It is also noted h
that the general solution of Ding et al.@29# could not account for
the case of equal eigenvalues involvings4 .

The symmetric crack problem of a prescribed temperature
plied over the faces of a flat crack in an infinite piezothermoela
solid is considered as an illustrative example. The problem is
transformed into a boundary value problem of a half-space
using the symmetric property. The five quasi-harmonic functio
in the general solution are in turn expressed in terms of th
potentials. The governing integro-differential equations of
problem are established from boundary conditions on the surf
Exact solutions to the resulting integro-differential equations
given, for instance, for a penny-shaped crack subjected to a
form temperature to its faces. Explicit expressions for the str
and electric displacement intensity factors are then presented.
found that both the factors are dependent on the mate
constants.

Using the present general solution, the static as well as dyna
behaviors of piezothermoelastic plates and shells can also b
vestigated. Further developments in this respect will be repo
in other papers.
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Dynamic Wetting: Displacement
of the Contact Line Induced by Air
Pressure Oscillations in Its Close
Vicinity
In most studies devoted to dynamic wetting, the viscosity of the ambient air is neg
compared with that of the liquid, which equivalently means that the surrounding a
considered to be static. However, the presence of air flows underneath the sheet le
an increase of the pressure in the wedge formed by the liquid sheet and the solid
strate. The pressure deforms the interface and tends to separate the liquid sheet fro
solid substrate. This is a coupled problem, the two unknown functions being the me
shape and the pressure generated in the air wedge. A simple model is proposed h
investigate the possible influence of slight pressure fluctuations in the air on the disp
ment of the contact line. This model incorporates the liquid wetting properties as we
parameters characteristic of the process and of the air pressure oscillations. The
result is that small amplitude pressure oscillations in the air close to the contact line
generate large lateral displacements of the contact line. At the same time, the air g
reduced as compared to its value in the static case.@S0021-8936~00!01904-8#
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1 Introduction
Numerous experimental studies concerned with the mecha

of air entrainment in dynamic wetting have been reported by s
eral authors since the pioneering work of Deryagin and Lev
1964. It is now well established that one of the limiting factors
high-velocity coating flows is air entrainment into the wedge b
tween the moving solid substrate and the liquid layer. Burley a
Jolly @1# proposed several correlations between the process
rameters and the onset of air entrainment and extensively
scribed the complex mechanisms involved~@2,3#!. After precursor
phenomena, such as unsteady and serrated meniscus, the ap
contact angle reaches 180 deg at the onset of air entrainmen
observed by Gutoff and Kendrick@4# or Miyamoto and Scriven
@5#. The visualization of coating flows is very difficult due t
small dimensions in the vicinity of the three-phase junction:
example, Mues et al.@6# found by using laser Doppler velocim
etry that when the capillary number is greater than 0.25, the
served contact line becomes apparent and a thin air layer is
trained between the coated liquid and the moving surfa
Qualitative observations by means of a high-speed camera
firmed this tendency: see, for instance, Veverka and Aidun@7,8#
and Miyamoto@9#. These studies clearly show that the dynam
effects of the ambient air in the vicinity of the contact line shou
not be neglected, even in the case of no air entrainment.

The theoretical counterpart of these studies is far from being
rich. In other words, there are only few theoretical studies dea
with the microfluid mechanics of air entrainment in the vicinity
the dynamic wetting line since the first analysis of Huh a
Scriven@10# considering Stokes flow in the vicinity of the tripl

1Present address: Corning S.A., Centre Europe´en de Recherche de Fontaine
bleau, 7bis avenue de Valvins, 77210 Avon, France.

2Present address: Ecole Supe´rieure de Plasturgie, BP 807 01108 Oyonna
France.
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December 21, 1998; final revision, May 22, 2000. Associate Technical Editor: D
Siginer. Discussion on the paper should be addressed to the Technical Editor
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University
Houston, Houston, TX 77204-4792, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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line. The key idea to consider here is that the pressure fo
generated in the air wedge are large enough to lift up the meni
in the close vicinity of the contact line. The amount of air e
trained can be predicted by projecting the contact line to infin
~Emonot@11#, Emonot et al.@12#, and Bourgin and Tahiri@13#!.
In such conditions, an analytical solution can be achieved thro
asymptotic expansions, leading to a good agreement with num
cal predictions~Tahiri @14#, Tahiri et al. @15#, or Bourgin and
Saintlos@16#!.

Here, a more realistic model is proposed to consider the rol
air pressure by linking the free surface to the moving surfa
Numerical predictions show the influence of slight pressure fl
tuations in the air in the vicinity of the contact line on the motio
of the triple line.

2 Flow Configuration and Governing Equations
Neglecting side-leakage effects, the basic configuration is

of a two-dimensional liquid sheet flowing onto a moving so
substrate, as shown in Fig. 1. The flow rate at the outlet of
ejector of openinge0 is prescribed, as well as the translation v
locity of the solid~U!. Since the average ejection velocity is low
than U, the liquid sheet accelerates and is stretched so tha
current thickness~e! decreases from the die opening down to t
layer thickness. The challenge is to guarantee a uniform value
the coated layer, by controlling the process key parameters.

This is a free-surface problem, the shape of the liquid sh
~and consequently the final thickness of the coated layer! being
unknown as well as the velocity distribution along and through
the sheet. Far upstream of the three-phase contact line, com
recirculating flows take place, but without any significant press
increase: The ambient air does not affect the shape of the liq
sheet surface and the classical free-surface boundary condi
can be applied at the liquid/air interface. Close to the three-ph
junction, some air is entrapped in the wedge between the s
substrate and the liquid sheet and, as a result, the pressur
creases, which deforms the interface and tends to separate
liquid sheet from the solid substrate. This is a coupled proble
the two unknown functions being the meniscus shape~or equiva-
lently the air gap thickness! and the pressure generated in the
gap. The effects of the pressure fluctuations at the inlet of

-
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,
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contacting zone are studied in this paper. Figure 2 represen
magnification of the contacting zone, the interface represente
a parabola. The air gaph(x,t) which corresponds to the interfac
shape is given by the following relationship, the radius of cur
ture R being the curvature of the liquid sheet:

h~x,t !5hmin~ t !1
x2

2R
. (1)

The radiusR is here supposed to be constant as observe
Levarlet and Finnicum@17# where the authors have performed
perturbation in the air upstream the triple line in a bead coa
configuration and visualized no deformation of this radius. T
meniscus portion is connected to the solid wall through an ar
a circle of radiusrc and the following relationship holds:

rc5
hmin

2 cosu
. (2)

The pressure is governed by the time-dependent Reyn
equation:

]

]x S h3~x,t !

12h

]P

]x
2Uh~x,t ! D5

]h~x,t !

]t
. (3)

The contact zone considered here ranges between abscissxe
~inlet! and xs ~outlet!. The location ofxe is a difficult question.
Several points of view can be proposed: The inlet location can
considered either as the first point where the pressure in the
starts to rise and subsequently affects the meniscus shape,
the last point of the upstream zone. Whatever the choice may
a complete study of the upstream zone is necessary, whic
beyond the scope of the present paper. Therefore,xe will be con-
sidered here as a given parameter. The outlet locationxs corre-
sponds to the three-phase junction, i.e., the attachment point o
meniscus to the substrate.

Clearly, the value of this abscissaxs is expected to be affecte
by pressure fluctuations at the inlet. However, it is assumed
first step that the meniscus deformations reduce to vertical tr

Fig. 1 Flow configuration

Fig. 2 Magnification of the contacting zone
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lations of a rigid solid which means that the unknowns are n
the pressure field and the distance between the meniscus an
solid substrate. Therefore, the outlet location will be prescrib
and taken equal to zero without loss of generality, which cor
sponds to assuming that the parabola has a horizontal tangen
x5xs ~i.e.,hmin5hs!. A second step will consist of considering th
outlet location as an unknown and then studying the lateral mo
of the triple line due to pressure oscillations at the inlet.

3 First Step: Vertical Motion of the Meniscus Over the
Triple Line

3.1 Boundary Conditions. The boundary conditions are a
follows:

P~x5xe!5Pm sinvt, P~x50!5
s

rc
. (4)

The first equation expresses that the inlet pressure oscill
~amplitudePM and frequencyn5v/2p are given! and the second
one is the Laplace equation. The initial condition forhs(t) is the
thickness value for the steady case~with the steady Reynolds
equation!:

hs~ t50!5h0 . (5)

The steady case problem has a closed-form solution which
lows h0 to be expressed as a function of the governing parame
by balancing the resulting of the pressure forces with the exte
‘‘pinning’’ force ~W!:

W

s
5

8CaR

h0
S 1

2
1

4 cosu

3p CaA2R
Ah0D (6)

where Ca is a capillary number built on the viscosity of air (C
5hU/s) andW/s represents a dimensionless number~ratio be-
tween external—gravity, . . . —andsurface tension forces!.

3.2 Solution. The problem defined by Eqs.~2!–~5! leads to
a straightforward analytical solution forP(x,t) as well as for its
integrated value~loading forceW!. Assuming thatW is main-
tained constant in time and introducing the change of variab
~Woehl @18#!,

H~ t !5
hs~ t !

h0
, (7)

the governing ordinary differential equation forH reads:3

A
1

H3/2

dH

dt
5

B

H
1C~ t !AH1

D

AH
1E~ t ! (8)

whereA, B, . . . , E are known functions given by

A5
6hRA2R

Ah0
S p

4
2

4

3p D (9)

B5
4hUR

h0
(10)

C~ t !52
4A2R

3p
Pm sin~vt !Ah0 (11)

D5
16A2R

3pAh0

s cosu (12)

E~ t !52W2xePm sin~vt !. (13)

3As Eq.~1! shows that the height functionh(x,t) is the sum of a function of time
and a function of space, the unsteady Reynolds equation leads to an equation w
unique space variablex which is easily solved.
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Equation~8! has been solved by a Runge-Kutta method of t
fourth order, for the following set of data:xe521 mm; R
51 mm; h518.1026 Pa.s. The overall dimensions of the contac
ing zone are prescribed. Provided thatxe be sufficiently large
compared to the air gap thickness, it does not affect the resu

3.3 Results. Figure 3 shows the effect of the amplitude of th
pressure oscillations at the inlet on the meniscus vertical displa
ment, the velocity being equal to 1 m/s, the frequency to 50 H
the wetting angle to 85 deg, the loading force to 0.1 N/m, and
surface tension to 50.1023 N/m.

The response to a pressure sine signal is not sinusoidal
amplifies the gap between the liquid sheet and the solid w
which tends to separate the meniscus from the solid subst
This trend drastically develops as the pressure amplitude
creases, although the absolute value of the latter remains q
small ~150 Pa!. It can be seen in Fig. 4 that when the nomin
substrate velocity increases, the previous effects are still
hanced. A way to improve the quality of coating by reducing t
fluctuations at the triple line is to force the liquid layer into co

Fig. 3 Influence of pressure amplitude on relative vertical dis-
placement

Fig. 4 Influence of velocity on vertical displacement
714 Õ Vol. 67, DECEMBER 2000
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Fig. 5 Influence of wetting angle on relative vertical displace-
ment

Fig. 6 Influence of surface tension on vertical displacement

Fig. 7 Influence of pinning force on vertical displacement
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tact with the solid substrate and to adhere to it either by modify
the fluid wetting properties~reducing the wetting angle and su
face tension! or by using so-called pinning systems~for instance,
by means of an electrostatic or a magnetic field!. The influence of
the wetting angle~Fig. 5! confirms the previous remarks: Whe
the wetting angle is small, the liquid better sticks on the so
which damps down the vertical fluctuations of the meniscus.
the same way, Fig. 6 illustrates the beneficial influence of l
surface tension. Figure 7 confirms that increasing the pinn
force is efficient indeed.

4 Second Step: Lateral Displacement of the Triple Line
As pointed out in Section 3, large pressure fluctuations occu

the vicinity of the triple line, which should lead to displacemen
of the three-phase junction when maintained at prescribed lo
tion. The variation in the position of the triple line~given by the
unknownxs! will now be addressed as a function of timexs(t).

4.1 Additional Equation. The boundary condition at the out
let xs remains given by the Laplace equation as in Eq.~4b!:

P~x5xs!5
s

rc
. (14)

The three-phase junction is now free to move along the s
strate. It means that its locationxs(t) becomes the third unknown
along with the vertical distancehs(t) and the pressure field
P(x,t). Abscissaxs is controlled via an additional condition at th
inlet: The flow rateQe at the entrance (xe) is prescribed; its value
is evaluated by a study in the upstream zone in the spirit of Bo
gin and Tahiri@19#—its order of magnitude being equivalent to
one micrometer height of air.

The initial conditions forhs(t) andxs(t) are given again by the
result of the steady case:

hs~ t50!5h0 (15)

xs~ t50!5xs0 . (16)

4.2 Solution. The problem defined by Eqs.~2!–~5! ~Eq.
~4b! being replaced by Eq.~14!! and the flow rate condition lead
to a system of two coupled nonlinear differential equations of
first order~both similar to Eq.~8!! involving only hs(t) andxs(t).
The same set of data as in Section 3 has been selectedxe

521 mm; R51 mm; h518.1026 Pa.s. In addition, only one
value of the substrate velocity was chosen, as an illustrative

Fig. 8 Influence of the amplitude of a small perturbation on
lateral motion of triple line
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ample: u51 m/s. The problem was solved by a Runge-Kut
method of the fourth order. As quoted before, the values of
inlet abscissa (xe) does not affect the results, provided it be su
ficiently large far upstream ofxs(t).

4.3 Results

~i! For a given set of process parameters, the displacemen
the triple line are very sensitive to any oscillations of the in
pressureP(xe ,t), as seen in Fig. 8. However, the response
hs(t) to inlet pressure oscillations are very different~Fig. 9!: A
transient regime takes place until the air gap distance reach
constant value which is significantly lower than that in the stea
case. There is no clear explanation why the oscillations are ma
transmitted to the triple line lateral displacements.

~ii ! Keeping the same set of process parameters, the effec
the flow rate onxs(t) and hs(t) for prescribed pressure oscilla
tions are respectively shown in Figs. 10 and 11. After the trans
regime, which typically extends over one period (.3.1023

s5T0) the inlet flow rate does not affect much the triple lin

Fig. 9 Influence of the amplitude of a small perturbation on
vertical displacement

Fig. 10 Influence of inlet flow rate on lateral motion of triple
line
DECEMBER 2000, Vol. 67 Õ 715
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motion ~Fig. 10!. The asymptotic values ofhs(t) reached after the
transient regime (.3.1023s5T0) are increasing functions of th
inlet flow rate~Fig. 11!.

~iii ! The dependence of the lateral displacement upon the liq
wetting properties as well as the process parameters is the sam
quoted in Section 3 for the vertical displacements: Improving
coating quality of the liquid reduces the effect of any fluctuati
at the inlet.

5 Conclusion
Considering the configuration of high-velocity curtain coati

flows, a simple model is proposed here to predict the influenc
pressure fluctuations in the air on the motion of the three-ph
junction in both vertical and lateral motion directions. The ma
result is that very slight pressure oscillations close to the tr
line may induce large lateral displacements of the triple line
gether with a reduction of the air gap thickness compared to
static case. Therefore, the thickness regularity of the final co
product is not expected to suffer from the liquid sheet verti
shifts directly, but from the lateral displacements of the triple lin
These phenomena can lead either to irregularities or eventual
a complete destruction of the junction with catastrophic air
trainment. The respective roles of the liquid wetting propert
~wetting angle, surface tension! as well as the process paramete
~translating velocity, pinning force! and parameters characterist

Fig. 11 Influence of inlet flow rate on vertical displacement
716 Õ Vol. 67, DECEMBER 2000
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of the pressure oscillations~amplitude! are investigated: The the
oretical predictions are in good qualitative agreement with w
known observations.
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Stability Analysis of an Initially
Inclined Ship in Following Sea
Generally speaking, the causes of ship capsizing in waves are due to the pure l
stability, parametric oscillation, and broaching-to phenomenon. In this paper, an ana
expression for the GZ value of a ship, inclined initially by some reasons like dama
longitudinal waves, is derived. And, the roll motion is calculated through the comp
simulation to give the necessary information for the safe regions of various paramete
a ship moving in a longitudinal wave.@S0021-8936~00!00704-2#
s
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1 Introduction
When a ship is moving in the following waves and if the e

counter frequency becomes about one half of ship’s natural
frequency, low-cycle parametric oscillation occurs and sometim
develops into the capsizing of a ship.

Grim @1#, Kerwin @2# Hamamoto@3#, and Paulling@4# solved
this problem by the ‘‘Mathieu Type’’ differential equation and b
computer simulations.

In this paper, the authors developed the analytic expression
the GZ value for an initially inclined ship with an angle off i in
longitudinal waves. And various calculations are executed w
the changes ofGM andTe , the encounter period of ship to wave
As a result, the stable and unstable region of these parameter
found.

2 Equation of Motion
The roll motion of a ship in a sinusoidal wave can be expres

by Eq. ~1!, using the coordinate system in Fig. 1.

~ I xx1Jxx!f̈1Nḟ1W•GZ~jG ,f!50 (1)

Here, (I xx1Jxx) is the virtual moment of roll andN is damping
coefficient, andjG is the longitudinal position of C.G. of a shi
relative to sinusoidal waves.

In Eq. ~1!, the wave exciting forces on the ship are excluded
simplify the problems. And the variation ofGZ along the change
of relative positionjG to waves is assumed as a sinusoidal fun
tion of Eq. ~2!.

GZ5
f r

p
GM sinS p

f

f r
D (2)

Here,f r is the angle of vanishing stability. AndGZ for the ini-
tially inclined ship with an angle off i is also expressed as

GZ5
f r

p
GM sinS p

f1f t

f r
D2GZf i

(3)

Here

GZf i
5

f r

p
GM sinS p

f i

f r
D . (4)

According to Kerwin@2#, the variation ofGM along the waves
can be presented as follows:

GMW5GM1DGM cosk~jG2ct!. (5)
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Here, k is the wave number andc is the phase velocity of the
wave.f r , the angle of vanishing stability, is assumed similarl

f r5fRH 11
Df

fR
cosk~jG2ct!J (6)

Here,fR is the angle of vanishing stability in still water, andDf
is the small change fromfR . MeanwhileGM is related toGZ by
the following equation:

GM5
dGZ

df U
f50

. (7)

Using the equations above, we can derive the following re
tion:

GZ5
f r

p
GMH 11

DGM

GM
~jG2ct!J H sinS p

f1f i

f r
D

2sinS p
f t

f r
D J (8)

Substituting Eq.~8! to Eq. ~1!, we get

f̈12aeḟ1
f r

p
vf

2 H 11
DGM

GM
cos~kj02vet !J

•H sinS p
f1f i

f r
D2sinS p

f i

f r
D J 50. (9)

9;
on
eler,
n,
of

Fig. 1 Coordinate system
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Here,

f r5fRH 11
Df

fR
cos~kj02vet !J (10)

ae5
N

2~ I xx1Jxx!
(11)

vf
2 5

W•GM

~ I xx1Jxx!
(12)

and

jG5j01Ut (13)

ve5k~c2U !. (14)

3 Numerical Calculation of Roll Motion
Nonlinear Eq. ~9! can be linearized and converted to th

Mathieu-type equation as follows:

d2F

dt2 1S Te

T D 2F12S ae

p D 2

1
DGM

GM
costGF50 (15)

Here

f~ t !5Fe2aet, t5vet.

ae is the effective extinction coefficient,

ae5
T

2
•ae . (16)

For a ship (ae /p)2 is a too small value and the outline o
rolling motion will mainly be determined by two paramete
DGM/GM andT/Te .

Therefore, we can say the variation ofGM and the change o
the encounter periodTe are main parameters that affect the ch
acteristics of roll motion in longitudinal waves.

We made two nondimensional parameters,DGM/GM and
T/Te for convenience. HereGM is the initial metacentric height
and T is the natural period of a roll. We presumedfR540 deg.
DGM/GM50.5. Df/fR50.5 andf i510 deg and the calcula
tion was done by the Runge-Kutta-Gill’s method.

Figure 2 shows the variation ofGZ along the waves of an
inclined ship, and Fig. 3 shows the stable, critical, and unsta
region ofDGM/GM and theT/Te parameters.

Extra calculation forDf/fR50.3 is carried out to see the e
fects ofDf/fR on rolling motion, and it was found that the stab

Fig. 2 Righting arm for computation of roll motion of the ten-
deg inclined ship
718 Õ Vol. 67, DECEMBER 2000
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Fig. 3 Stable and unstable regions for nonlinear equation of
the ten-deg inclined ship

Fig. 4 Righting arm for computation of roll motion of an up-
right ship

Fig. 5 Stable and unstable regions for nonlinear equation of
an upright ship
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region became wider with a smallerDf/fR value. Here, the criti-
cal zone is a region, where the roll motion becomes ste
oscillatory.

And another calculation of the same condition, but initially
an upright case (f i50°) is carried out, to examine the initia
inclination effects. These results are indicated in Figs. 4 and

From above results we can clearly see the difference of
safety region in an initially inclined and upright ship.

Finally, Fig. 6 shows the time histories of roll angles in a stab
critical, and unstable situation of an initially inclined ship.

From the figures above, we can see that the nonlinear beha
of roll motion are successfully calculated.

Fig. 6 Time histories of stable and unstable regions for a non-
linear equation in the ten-deg inclined ship
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4 Conclusion
The lateral stability of an initially inclined ship in longitudina

waves is studied, with use of the nonlinear roll equation. T
following are the main results derived from this study.

1 Proposed nonlinear roll equation can simulate the roll mot
of an initially inclined ship in longitudinal waves.

2 Using this method, the stable zone in longitudinal motion c
be assessed.

3 This approach can be applied to calculate the safety ma
of a ship in various conditions, including damage.

Nomenclature

ae 5 effective extinction coefficient
c 5 phase velocity of wave

GM 5 metacentric height
DGM 5 small change fromGM

GZ 5 righting arm
I xx 5 mass moment of inertia of a ship
Jxx 5 added mass moment of inertia of a ship

k 5 wave number
Kf 5 roll damping coefficient

N 5 damping coefficient of a ship
W 5 weight of a ship
t 5 time

T 5 natural period of a roll
Te 5 encounter period of wave
f 5 roll angle

fR 5 angle of vanishing stability
Df 5 small change fromfR
f i 5 initial inclination angle
vf 5 natural circular frequency
ve 5 encounter wave frequency
jG 5 relative position of a ship to wave
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Stick-Slip, Imposition-Removal of
Constraints and the Spinning Ball
Problem
It has been observed that balls pressed between elastic bodies spin when subje
linear, cyclic motion. This paper proposes an explanation to this phenomenon, b
upon the stick-slip theory. To this end, a modified, vectorial formulation of the stick
theory is presented. The formulation is applied to a model comprising a ball pre
between pairs of springs and dampers. A computer program based on this formulat
used to predict the resulting motion. Predictions are shown to agree with experim
results.@S0021-8936~01!00701-2#
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1 Introduction
Figure 1~a! shows a uniform steel ballB of massm and radius

R pressed between two elastic platesPB andPH , connected to a
rigid housingB8. A simplified model of the system in Fig. 1~a! is
shown in Fig. 1~b!. There,PB andPH are replaced with two rigid,
massless plates, two massless springsSB andSH , each of ratek,
and two massless dampersDB andDH , each of constantb which
is significantly smaller than the critical damping. Suppose thatB8
is uniformly displaced by an amounty(cosan11sinan2), where
y5a sin 2pft. Furthermore, suppose that the static deformation
the springs isx0 . Then, for certain values ofa and a, the ball
spins essentially with a constant angular speedV either clockwise
or counterclockwise, depending on whetherf ,1/2pA2k/m or f
.1/2pA2k/m. This behavior was the subject of an extensive
search by Edelstein@1#. He subjected a system similar to that
Fig. 1~a! to 150 m/sec2 (5a(2p f )2) uniform sine-sweep vibra-
tions in the 500–1100 Hz frequency range~then a varies in the
range 15.2–3.14 micrometer!, changingf at a rate of 10/3 Hz/sec
and measuredV as a function off. For a system characterized b
f n=1/2pA2k/m5720 Hz, F=kx05336 N ~a preload 150 larger
than the weight of the ball!, 2R50.0381 m anda537 deg he
obtained Fig. 2, showingV( f ).

It is the purpose of the present work to show that this kind
behavior can be predicted with reasonable accuracy, as show
Fig. 3~a!, if use is made of a modified formulation of the stick-sl
theory. The modified formulation will next be presented and d
cussed in light of existing formulations; and then applied to
problem of a particle moving on a vibrating slider, and to t
problem of the spinning ball.

2 Stick-Slip Theory

Equations of Motion. A generic stick-slip theory can be de
scribed with the aid ofB8 and P, a rigid body and a particle
respectively, that remain in contact with one another during m
tions ofS, a system includingB8 andP. According to this theory,
two phases of motion may occur: slipping phase, whenP moves
relative toB8; and sticking phase, whenP remains fixed inB8.
Then stick-slip is said to take place atP.

This state of affairs can be dealt with analytically ifS is as-
sumed to be a simple, nonholonomic system ofn particlesPi( i

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
10, 1999; final revision, July 18, 2000. Associate Technical Editor: R. C. Ben
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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51, . . . ,n), possessingn̄ generalized coordinatesq1 , . . . ,qn̄ and
n generalized speedsu1 , . . . ,un in N, a Newtonian reference
frame, wheren̄>n. Suppose that the motion ofS in N is defined
as unconstrained in the slipping phase, and governed byn dy-
namical equations, namely,

Fr1Fr* 50 ~r 51, . . . ,n! (1)

whereFr andFr* are therth generalized active force and therth
generalized inertia force forS, respectively. Moreover, suppos
that the sticking phase is associated with constraints impose
the motion ofS. These constraints can be represented bym linear
relationships between the generalized speeds, and formulate
follows:

b.
on.
essor
on,
li-

Fig. 1 A ball pressed between two elastic plates
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Ckrur1Dk ~k5p11, . . . ,n,p5n2m!, (2)

whereCkr andDk ~k5p11, . . . ,n; r 51, . . . ,p! are functions of
q1 , . . . ,qn̄ and timet. Then the motion ofS in the sticking phase
is definedas constrained and governed by the following equatio
~@2#!:

Fr1Fr* 1 (
k5p11

u

Ckr~Fk1Fk* !50 ~r 51, . . . ,p!. (3)

Next, suppose that a transition from the slipping phase to
sticking phase occurs betweent1 , the last instant of the slipping
phase, andt2 , the first instant of the sticking phase; and thatt1
and t2 are infinitely close to one another. Then

qr~ t2!5qr~ t1! ~r 51, . . . ,n̄!; (4)

i.e., the configuration ofS in N remains unaltered betweent1 and
t2 . Moreover, no instantaneous change in the velocities of po
accompanies the transition, an observation based on phy
grounds. Synnestvedt@3# reports that, in accordance with exper
ments conducted at NASA Ames, this is not strictly true. Cert
relative velocities become zero abruptly after acquiring a su
ciently small value. It is generally assumed, however, that
associated instantaneous changes in the indicated velocities c
disregarded. This means that preciselyn independent relationships
of the form vPi

•c(t2)5vPi
•c(t1) can be identified, wherevPi is

the velocity ofPi in N, andc is a unit vector; and these relation
ships reduce to

ur~ t2!5ur~ t1! ~r 51, . . . ,n! (5)

when written explicitly. Consequently, Eqs.~2! are satisfied both
at t1 and att2 .

Equations~4! and ~5! are also valid in connection with transi
tions from the sticking phase to the slipping phase. Thent1 andt2
are the last instant of the sticking phase and first instant of
slipping phase, respectively. These roles are played byt1 and t2
throughout the remainder of this work. In summary, Eqs.~1! and

Fig. 2 V as a function f for aÄ37 deg: experimental results
Journal of Applied Mechanics
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~3! govern stick-slip motions, the transitions occurringwithout
changes in the integration variables, as indicated by Eqs.~4! and
~5!.

Transition Conditions. A key point in the simulations of
motions involving stick-slip is the formulation of transition con
ditions, namely, conditions the satisfaction of which initiate
transition from one phase to another. To formulate these co
tions, considerB8 and P again, and letP8 be a point ofB8 in-
stantaneously in contact withP in the slipping phase and con
stantly in contact withP in the sticking phase, as shown in Fig.

Let vP and vP8 be the velocities ofP and P8 in N. Then vrel ,
defined by

vrel5vP2vP8 (6)

must lie onp, the plane tangent toB8 at P8. If vrel does not lie on
p, then eitherP penetratesB8 or P loses contact withB8. Finally,

let FP8/P be the force exerted byP8 on P, and note thatFP8/P

•p1.0 at all times ifp1 is a unit vector perpendicular top and
directed as shown in Fig. 4. The two phases and the assoc
transition conditions can be described as follows.

Sticking phase~Eqs.~3!!: P remains in contact withP8. Then

vrel50, (7)

a vector equation with scalar counterparts that can be cast in
form of Eqs.~2!. Let p28 be a unit vector aligned with the projec

tion of FP8/P on p, i.e.,

p28=~FP8/P2FP8/P
•p1p1!/uFP8/P2FP8/P

•p1p1u. (8)

Then FP8/P
•p28p28 is the friction force exerted onP by P8. In

connection with numerical analysis, the sticking phase pers
unless

msF
P8/P

•p1,uFP8/P
•p28u (9)

wherems is the static coefficient of friction.
Slipping phase~Eqs. ~1!!: P moves relative toP8, i.e., vrel

Þ0, except att5t2 ~the first instant of the slipping phase!, when
vrel(t2)50. Let p2 be a unit vector aligned withvrel , namely,

p2=vrel /~ uvrelu1d!, du t5t2
51;du tÞt2

50, (10)

whered is defined so thatp2(t2)50. Then, in accordance with
Coulomb’s friction law

FP8/P5FP8/P
•p1~p12mdp2* !, p2* =p22dp28~ t1!, (11)

Fig. 4 A particle in contact with the surface of a rigid body
Fig. 3 V as a function f for aÄ37 deg: simulation results for „a… bÄ14, „b…
bÄ18
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wheremd is the dynamical coefficient of friction betweenP and
B8. The definition ofp2* indicates, in view of Eqs.~10!, that p2*
5vrel /uvrelu whenevertÞt2 , andp2* 52p28(t1) when t5t2 . The
rationale underlying the introduction ofp2* is the following. By
definition vrel(t2)50, hencevrel cannot be used to determine th
direction of the friction force att2 . However, att5t1 ~the last
instant of the sticking phase! the direction of the friction force is
given by p28(t1) ~see Eq.~8!!. Moreover,t2 is infinitely close to
t1 , hence the following assumption is made, namely, thatp28(t1)
is also the direction of the friction force att5t2 . Note that this
assumption holds only for the first integration step following
transition from the sticking phase to the slipping phase. Then
direction of the friction force change instantaneously.

In connection with numerical analysis, the slipping phase p
sists unless

uvrelu,d, arel•p2,0. (12)

Herearel5d/dt(vrel), where differentiation inN is implied; andd
is a positive constant chosen to be less than the maximum
pected value ofuarel•p2uDt in the regionuvrelu,«, where« is a
predetermined, problem-dependent constant, andDt is the inte-
gration time-step. The exact value assigned tod is the outcome of
a compromise between two conflicting requirements. These
~a! passages throughvrel50 always lead to transitions to the stick
ing phase~henced should be large!; and ~b! transitions to the
sticking phase occur whenvrel50 ~henced should be small!.
Now, if d is too small or too large compared touarel•p2uDt, then
chatters may arise. In the present context, chatters comprise s
of nonphysical switches from one phase to another at consec
time steps. These chatters lead, at best, to inefficient simulat
and frequently to inaccurate results. Chatters arise ifd is ‘‘too
small’’: then passages ofvrel through zero may not be detected;
if d is ‘‘too large’’: then transitions to the sticking phase ma
occur whenvrel is much larger than zero. Note that, in the absen
of arel•p2,0 from condition~12! an additional cause for chatter
arises ifd is ‘‘too large.’’ Then transitions to the slipping phas
may lead, after one integration step, tovrel which is smaller thand.
Transition back to the sticking phase will follow, although th
slipping phase should have persisted. It may be concluded tha
date, no closed-form expression for the determination ofd was
found that guarantees the elimination of chatters. It will be sho
however, that a few numerical experiments lead to a choiced
by which chatters can be avoided.

The following comments are in order:

~a! Satisfaction of conditions~12! indicates thatuvrelu is smaller
thand and becomes yet smaller~it may occur thatuvrelu is smaller
than d, but becomes larger, i.e., following a transition from t
sticking phase to the slipping phase!.
~b! The conditionarel•p2,0 can be replaced witharel•vrel,0
sinceuvrelu.0 ~see Eqs.~10!!.

~c! FP8/P
•p1 in Eqs.~11! and ~9! andFP8/P

•p28 in Eq. ~9! can be
found, e.g., with the aid of a procedure given by Kane a
Levinson~@2#, Sec. 4.9! for the determination of ‘‘noncontribut-
ing’’ forces.
~d! md can be defined as a function ofuvrelu, accommodating dif-
ferent friction models, such as Coulomb’s model, Stribec
model, the linear model, and the multivalue model. These mo
are defined, e.g., by Hsien-I and Jeng-Hong@4#.
~e! The satisfaction of conditions~9! and ~12! is examined ‘‘off-
line’’ after each integration step. The outcome of the examinati
is the identification of either Eqs.~1! or Eqs.~3! as the equations
which should be integrated in the next integration step.

Inequalities~9! and ~12! are the requisite transition condition
Their use is illustrated in the following sections.

Past Efforts. Mechanical systems involving stick-slip mo
tions are the subject of numerous investigations. A numbe
authors seeking numerical simulations of motions of such syst
722 Õ Vol. 67, DECEMBER 2000
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take the ‘‘phase approach,’’ assuming that the motion consist
a number of phases governed by Eqs.~1!–~3!. Transition condi-
tions frequently encountered comprise simplified versions of c
ditions ~9! and ~12!. A widely used version of these condition
reads

TCslip-stick uvu,d; TCstick-slip msN,F, (13)

where the self-explanatory notation stands for quantities which
carefully defined in connection with conditions~9! and ~12!. At
times, the use of this version leads to chatters. Nevertheless
used, e.g., by Hsien-I and Jeng-Hong@4# investigating a number
of friction models, and by Huston et al.@5#, studying the dynam-
ics of a bowling ball. Kane and Levinson@6# deal with the motion
of a symmetric top with a spherical peg in contact with a horizo
tal plane. Their transition conditions do not include the second
conditions~12!; however, they prolong the use ofp28 in equations
similar to Eqs.~11! until uvrelu becomes greater thand. Thus, chat-
ters are avoided at the cost of slight inaccuracies. Synnesved@3#
suggests a dynamic partitioning method to generate equat
governing phases of motion involving stick, which he applies t
number of examples. In addition, Synnesvedt points out the
of acceleration/deceleration in the determination of transition c
ditions. However, he does not cast his observation into a worka
formulation as in conditions~12!.

Karnopp@7# offers a different approach to the stick-slip pro
lem. He formulates only one set of motion equations, namely,
set governing the motion in the slipping phase. However, the f
tion forces exerted on points where stick-slip occurs have d
expressions. One expression is of the ‘‘mdN’’ type, valid when
slip persists. The other is defined so as to causeuvrelu to vanish,
hence is valid when stick persists. Finally, Karnopp uses con
tions ~13! to determine transitions, callingmsN ‘‘breakaway
force.’’ It is not clear from Karnopp’s paper how chatters a
eliminated. Nevertheless, his approach is extensively used, ma
by authors synthesizing control schemes to overcome stick-
For instance, Southward et al.@8# discuss a force compensatio
scheme, supplementing PD control applied to a rotary syst
Jia-Yush et al.@9# prove stability of a pseudo-derivative feedba
~PDF! controller applied to a system undergoing stick-slip motio
and synthesize an accurate PDF rotary controller. Lastly, Tan
Rogers@10# apply Karnopp’s approach to a system comprising
ball moving on a horizontal plane and acted upon by springs
dampers. It seems that the authors using Karnopp’s appro
achieve ‘‘numerical stability,’’ i.e., chatter-free simulations, wi
a proper, experimental choice ofd.

When a complex stick-slip problem is considered, it is difficu
to determine in advance whether Karnopp’s approach is adva
geous as compared with the ‘‘phase approach’’; for, a numbe
steps are common to the two approaches, e.g., the generatio

FP8/P
•p1 andFP8/P

•p28 . It may be concluded, however, that con
ditions ~9! and ~12! are equally applicable to both these a
proaches. In fact, these conditions are applicable to any prob
involving stick-slip motions. With a proper choice ofd, no chat-
ters arise, and the accuracy of the formulation is extended to
limits.

3 A Particle in Contact With a Vibrating Slider
Let P be a particle of massm, sliding on a planar surface o

body B8, which undergoes a predetermined motion inN, as
shown in Fig. 5. Letq1 andx(t) be defined as in the figure, an
let u1=q̇1 . Thenvrel5(u12 ẋ)n2 , and the equation governing th
motion of P in N in the slipping phase is, in view of Eq.~11!,

2mu̇11FP8/P
•n1~n12mdp2* !•n250, (14)

where n1 replacesp1 since p is fixed in N. Now, FP8/P
•n1

5mg, where g is the gravitational acceleration. Also,p25(u1

2 ẋ)n2 /(uu12 ẋu1d) and p28(t1)5 ẍ(t1)n2 /uẍ(t1)u; hence Eq.
~14! becomes
Transactions of the ASME
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2mu̇12mdmg@~u12 ẋ!/~ u~u12 ẋ!u1d!2dẍ~ t1!/uẍ~ t1!u#50,
(15)

an equation playing the role of Eqs.~1! for n51. Moreover, if, in
accordance with conditions~12!,

uu12 ẋu,d, ~ u̇12 ẍ!~u12 ẋ!,0, (16)

then transition to the sticking phase occurs, and the motion
ceeds so that

u15 ẋ~ t !. (17)

Finally, uFP8/P
•p28u5muẍ(t)u in the sticking phase, hence trans

tion to the slipping phase occurs when

msmg,muẍ~ t !u, (18)

a relation obtained by reference to condition~9!. Note that in this
case no equation plays the role of Eqs.~3! (n5m51), and Eq.
~17! is a kinematical equation.

Suppose thatx5x0 cosvt. Then Figs. 6~a!, 6~b!, and 6~c! show
the time histories ofq1 , of u1 and ẋ ~heavier line! and of the
friction force~the term multiplied bymd in Eq. ~15!!, respectively,
for m51 kg, v53 rad/sec,x050.35 m, md50.15, ms50.3, Dt
50.0001 sec and d50.0003 m/sec (uarel•p2umaxDt5ẍmaxDt
5x0v

2Dt50.0003 m/sec). Note that sinceB8 moves ‘‘symmetri-
cally’’ back and forth,P does not advance. Suppose now that
motion of B8 is induced by a crank-and-slider mechanism with
crank of radiusx0 and a connecting rod of lengthkx0 . Then x
5x0 cosvt1kx0 cos$@sin21@(sinvt)/k%; and, fork53 andx0 andv
as before, the time histories ofq1 , of u1 and ẋ ~heavier line! and
of the friction force are as in Figs. 6~d!, 6~e! and 6~f!, respectively.
These results were obtained with a numerical integrator base
Kutta-Merson, variable step-size algorithm withDt as the maxi-
mum time-step.

At times, stick-slip may occur at two points, sayP̂ andP̄. Then
two classes of problems can be identified. The first class invo
cases where stick/slip atP̂ implies stick/slip atP̄, except, possi-
bly, at singular configurations, and vice versa, as whenP̂ and P̄
belong to the same rigid body. As before, this class of proble

Fig. 5 A particle in contact with a reciprocating base
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involves two phases of motion, namely, a sticking phase an
slipping phase; and was investigated, e.g., by Han et al.@11# and
by Pfeiffer @12#. A second class of problems involves two poin
where stick-slip occurs independently, as whenP̂ andP̄ belong to
two distinct objects. This state of affairs calls for new definitio
of phases of motion~@7#!, because phases of motion are possi
in which sticking occurs at one point and slipping occurs at
other. One example of such a system is that in Fig. 1, represen
the problem of the spinning ball.

4 The Problem of the Spinning Ball
Here it will be shown that the spinning of the ball in Fig. 1 ca

be simulated if the stick-slip theory is applied toP̂ and P̄, points
of B instantaneously in contact withP̂8 andP̄8, points ofPH and
PB , respectively. Stick-slip can occur atP̂ andP̄, independently;
hence, four phases of motion are defined as follows. Phase 1:
at bothP̂ and P̄; Phase 2: stick atP̂ and slip atP̄; Phase 3: slip
at P̂ and stick atP̄; and Phase 4: stick at bothP̂ and P̄.

To obtain equations governing the motion ofB in N one may
start by writing motion equations ofB in Phase 1, whenB is in its
‘‘minimally constrained state’’~the minimally constrained state o
a system is defined as a state in which the motion is subjec
constraints which arenot removed throughout the motion~@13#!!.
This can be done with the aid ofni andbi ( i 51,2,3), two sets of
three dextral, mutually perpendicular unit vectors fixed inN and
B, respectively; andur (r 51,2,3), defined such that

vB* 5u1n11u2n2 , vB5u3n3 (19)

whereB* is the mass center ofB. Suppose that initiallybi are

aligned with ni ( i 51,2,3), thatvB* 5vB50, that B* coincides
with O, a point fixed inN; and defineqr (r 51,2,3) such that

pO/B* 5q1n11q2n2 , n1•b15cosq3 (20)

where pO/B* is the position vector fromO to B* . Then q̇r
5ur (r 51,2,3).

Now, the only contact forces acting onB areFP̂8/ P̂ andFP̄8/ P̄,
exerted byP̂8 on P̂ and by P̄8 on P̄, respectively. These force
can be expressed, in accordance with Eq.~11!, as

FP̂8/ P̂5F̂~2n12mdp̂2* !,
(21)

F̂5F2k~y cosa2q1!2b~ ẏ cosa2u1!;

FP̄8/ P̄5F̄~n12mdp̄2* !,
(22)

F̄5F1k~y cosa2q1!1b~ ẏ cosa2u1!.
Fig. 6 q 1 , u 1 and friction force temporal behavior for symmetrical and
nonsymmetrical reciprocating motions
DECEMBER 2000, Vol. 67 Õ 723
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Here p152n1 and p15n1 in connection withFP̂8/ P̂ and FP̄8/ P̄,
respectively;F is the preload of the springs~i.e., the magnitude of
the force exerted by each of the springs on the ball whenq1

5y cosa andu15 ẏ cosa!; and p̂2* and p̄2* are unit vectors play-
ing, in connection withP̂ and P̄, the role whichp2* plays in
connection withP in Eqs.~11!. Moreover, if d̂ and d̄ are defined
similarly to d in Eqs.~10!, thenp̂2* and p̄2* can be expressed as

p̂2* 5 v̂rel /~ uv̂relu1d̂!2d̂FP̂8/ P̂
•n2n2 /uFP̂8/ P̂

•n2u
(23)

p̄2* 5 v̄rel /~ uv̄relu1d̄!2d̄FP̄8/ P̄
•n2n2 /uFP̄8/ P̄

•n2u,

in accordance with Eqs.~11!, ~10!, and ~8!. Here FP̂8/ P̂2FP̂8/ P̂

•n1n15FP̂8/ P̂
•n2n2 andFP̄8/ P̄2FP̄8/ P̄

•n1n15FP̄8/ P̄
•n2n2 ; and

v̂rel=vP̂2vP̂8, v̄rel=vP̄2vP̄8. (24)

Explicit expressions forv̂rel and v̄rel can be obtained with the aid
of the position vectors fromB* to P̂ and P̄, given by

pB* / P̂5Rn1 , pB* / P̄52Rn1 . (25)

Hence the velocities ofP̂ and P̄ are

vP̂5u1n11~u21Ru3!n2 , vP̄5u1n11~u22Ru3!n2 ; (26)

the velocities ofP̂8 and P̄8 are

vP̂85vP̂
•n1n11 ẏ sinan2 , vP̄85vP̄

•n1n11 ẏ sinan2 (27)

so that, by reference to Eqs.~24!,

v̂rel5~u21Ru32 ẏ sina!n2 , v̄rel5~u22Ru32 ẏ sina!n2 .
(28)

One can now write the motion equations for Phase 1. These

2mu̇12F̂1F̄50 (29)

2mu̇22mdF̂p̂2* •n22mdF̄p̄2* •n250 (30)

2Iu̇32mdF̂Rp̂2* •n21mdF̄Rp̄2* •n250, (31)

wherem is the mass ofB, andI is the central moment of inertia o
B. In Phases 2 and 3 the motion is subject to the constraintsv̂rel
50 andv̄rel50, respectively. These become, in view of Eqs.~28!,

u21Ru32 ẏ sina50, u22Ru32 ẏ sina50. (32)

Solving each of Eqs.~32! for u3 one has

u35~ ẏ sina2u2!/R (33)

u352~ ẏ sina2u2!/R. (34)

Equations~33! and~34! play the role of Eqs.~2! in Phases 2 and
3, respectively. Direct substitutions in Eqs.~3! from Eqs.~29!–
~31! and ~33! lead to equations governing the motion ofB in
Phase 2. These are

2mu̇12F̂1F̄50 (35)

2~m1I /R2!u̇21I ÿ sina/R222mdF̄p̄2* •n250. (36)

Similar equations govern the motion ofB in Phase 3, namely,

2mu̇12F̂1F̄50 (37)

2~m1I /R2!u̇21I ÿ sina/R222mdF̂p̂2* •n250, (38)

obtained by substitutions from Eqs.~29!–~31! and ~34! in Eqs.
~3!. Finally, the motion in Phase 4 is subject to both of the co
straints in Eqs.~32!. Solving these equations simultaneously f
u2 andu3 one gets

u25 ẏ sina, u350. (39)
724 Õ Vol. 67, DECEMBER 2000
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These equations, together with Eqs.~29!–~31! lead, in conjunction
with Eqs.~3!, to

2mu̇12F̂1F̄50, (40)

an equation which governs the motion ofB in this phase.
Next, lettingTCi 2 j denote transition conditions from Phasei to

Phasej ( i , j 51,2,3,4;iÞ j ) and applying conditions~9! and ~12!
to the four phases, one obtains

TC122 uv̂relu,d, ârel• v̂rel,0

TC123 uv̄relu,d, ārel• v̄rel,0 (41)

TC124 uv̂relu,d, ârel• v̂rel,0, uv̄relu,d, ārel• v̄rel,0;

TC221 msF̂,uFP̂8/ P̂
•n2u

TC223 msF̂,uFP̂8/ P̂
•n2u, uv̄relu,d, ārel• v̄rel,0 (42)

TC224 uv̄relu,d, ārel• v̄rel,0

where

FP̂8/ P̂
•n25I ~ ÿ sina2u̇2!/R22mdF̄p̄2* •n2 ; (43)

TC321 msF̄,uFP̄8/ P̄
•n2u

TC322 msF̄,uFP̄8/ P̄
•n2u, uv̂relu,d, ârel• v̂rel,0 (44)

TC324 uv̂relu,d, ârel• v̂rel,0

where

FP̄8/ P̄
•n25I ~ ÿ sina2u̇2!/R22mdF̂p̂2* •n2 ; (45)

and

TC421 msF̂,uFP̂8/ P̂
•n2u, msF̄,uFP̄8/ P̄

•n2u

TC422 msF̄,uFP̄8/ P̄
•n2u (46)

TC423 msF̂,uFP̂8/ P̂
•n2u

where

FP̄8/ P̄
•n25FP̂8/ P̂

•n250.5mÿsina. (47)

Finally, note that, in view of Eqs.~43!, ~45!, and ~47!, the
definitions ofp̂2* and p̄2* in Eqs. ~23! do not reflect the fact tha

different expressions forFP̂8/ P̂
•n2 andFP̄8/ P̄

•n2 are valid at dif-
ferent phases. Thus, the phase preceding a transition to Pha

say, may be either Phase 3, in which eventFP̄8/ P̄
•n2 is given by

Eq. ~45!; or Phase 4, in which eventFP̄8/ P̄
•n2 is given Eqs.~47!.

This fact can be taken into account if the definitions ofp̂2* andp̄2*
are modified as follows:

p̂2* 5 v̂rel /~ uv̂relu1d̂211d̂231d̂411d̂43!

2~ d̂211d̂23!@FP̂8/ P̂
•n2#2n2 /@ uFP̂8/ P̂

•n2u#22~ d̂411d̂43!

3@FP̂8/ P̂
•n2#4n2 /@ uFP̂8/ P̂

•n2u#4 (48)

p̄2* 5 v̄rel /~ uv̄relu1d̄311d̄321d̄411d̄42!

2~ d̄311d̄32!@FP̄8/ P̄
•n2#3n2 /@ uFP̄8/ P̄

•n2u#32~ d̄411d̄42!

3@FP̄8/ P̄
•n2#4n2 /@ uFP̄8/ P̄

•n2u#4 , (49)

where, in connection with a transition from Phase 4 to Phas

d̂41u t5t2
51 and d̂41u tÞt2

50, and @FP̂8/ P̂
•n2#4 is given by Eqs.

~47!; etc. Furthermore,p̂2* 5 v̂rel /uv̂relu wheneveruv̂reluÞ0, andp̂2*
Transactions of the ASME
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52@FP̂8/ P̂
•n2# in2 /@ uFP̂8/ P̂

•n2u# i at t2 , the first instant of slipping
at P̂ in Phases 1 or 3—following a transition from either Phas
~then i 52! or Phase 4~then i 54!; etc.

A program simulating motions ofB in N was constructed, base
upon Eqs.~29!–~31!, ~35!–~36!, ~37!–~38!, and~40!, which gov-
ern the motion in Phases 1, 2, 3, and 4, respectively; and
transition conditions~41!, ~42!, ~44!, and ~46!. Equations~29!–
~31! were coded explicitly, whereas Eqs.~35!–~36!, ~37!–~38!,
and ~40! were generated by the manipulation of terms of E
~29!–~31!, in conjunction with Eqs.~33!, ~34!, and ~39!, respec-
tively, as indicated by Eqs.~3! and ~2!. One second simulation
were run forf 5 f 1 , f 5 f 111, . . . ,f 5 f 11M Hz, wheref 1 andM
were selected so that the associated spin differs from zero.
average angular speedV( f ) was evaluated for each run and plo
ted in Fig. 3~a! as a function off, which seems to resembleV( f )
in Fig. 2. Slight deviations can be expected since such factor
the inertial properties ofPB and PH , and the convexity of the
surfaces ofPB and PH when deformed were disregarded, as w
the fact thatmd in the neighborhood ofP̂ might be different from
md in the neighborhood ofP̄.

A number of experimental runs of the indicated progra
showed that the maximum expected value ofarel•p2 is 200 m/sec2,
so that, withDt50.00002 sec,d should be smaller than 0.00
m/sec. In fact, it was found experimentally that withd50.0001 no
chatters arise. Now, Edelstein@1# in his experiments used plate
(PB and PH! made of poly-methyl-methacrylate~Dupont’s
PMMA is commercially known as Perspex!. Measuring the static
and dynamic coefficients of friction in question, he foundms
50.1960.084 andmd50.06660.024. Accordingly, Fig. 3~a! was
obtained withms50.19, md50.066, b514 N-sec/m(j50.007)
andm50.224 Kg, I 50.0000328 Kg-m2, k52313000 N-m. Inter-
estingly, q2 shows a cyclic behavior with an amplitude of fou
micrometers. One may conclude that lateral space in the orde
a few micrometers suffices for the spinning ball effect to devel

Additional runs show thatV( f ) changes only slightly if differ-
ent values ofms or md are used, and that the inclusion of gravi
forces produces almost no effect on the simulation results. On
other hand, different values ofb affect the results considerably, a
shown in Fig. 3~b! for b518 N-sec/m. A plot similar to that in
Fig. 3~b! is obtained if the preloadF is increased to 420 N. Thes
results point out ways to decay the spinning ball effect.

Finally, the reverse of the sign ofV( f ) associated with the
passage throughf n51/2pA2k/m5720 Hz deserves attention.
can be explained with the aid of Figs. 7 and 8, showing porti
of the time histories ofq1 ~thin line!, y and ẏ ~thick lines! for f
5710 Hz(, f n) and f 5730 Hz(. f n), respectively, and the asso

Fig. 7 Portions of the time histories of q 1 „thin line …, y , and ẏ
for fÄ710 Hz
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ciated phases of motion. Specifically, Fig. 7 shows thatq1 leadsy
and thatq1 max/ymax>26 ~note thaty in Fig. 7 is multiplied by 26!.

Hence, whenq1.0, springSH is pressed (FP̂8/ P̂
•n1>650 N) and

springSB is relaxed (FP̄8/ P̄
•n1>10 N). Consequently, stick arise

at P̂ and slip arises atP̄ ~Phase 2!. Moreover, whenq1.0, then
ẏ&0 ~i.e., whenq1.0, thenẏ is ‘‘mostly negative’’!, hence,PH

‘‘pulls’’ P̂ to the right, makingB8 spin clockwise aboutP̂. Simi-
larly, whenq1,0, springSB is pressed and springSH is relaxed.
Consequently, there is stick atP̄ and slip atP̂ ~Phase 3!; and,
since ẏi0 ~i.e., ẏ is ‘‘mostly positive’’!, PB ‘‘pulls’’ P̄ to the
left, makingB8 spin clockwise aboutP̄. By the same token, Fig
8 shows thatq1 leadsy an amount somewhat smaller thanp.
Also, q1 max/ymax>20 ~note thaty is Fig. 8 multiplied by 20!.
Hence, whenq1.0, springSH is pressed and springSB is relaxed.
Again, sticking arises atP̂ and slipping atP̄ ~Phase 2!. However,
now ẏi0, hence,PH ‘‘pulls’’ P̂ to the left, makingB8 spin coun-
terclockwise aboutP̂. Finally, whenq1,0, springSB is pressed
and springSH is relaxed. Stick atP̄ and slip atP̂ result in~Phase
3!; and, sinceẏu0, PB ‘‘pulls’’ P̄ to the right, makingB8 spin
counterclockwise aboutP̄. When f ! f n , thenq1 max/ymax comes
close to one, and whenf @ f n , then q1 max/ymax comes close to
zero. In either case the elastic deflections are small, preven
slip from taking place at eitherP̂ or at P̄ ~Phase 4!.

The phase plots in Figs. 7 and 8 indicate that the switches f
one phase to another are free of chatters.

Conclusions
It may occur that simplified transition conditions suffice to ca

ture stick-slip motions with fidelity. For example, this might b
the case when no reciprocating motion is involved. By way
contrast, the modified conditions presented here are applicab
all stick-slip problems; and are shown to provide reasonable
dictions of a complex stick-slip motion, such as that of the sp
ning ball.

It is finally worth pointing out that rolling elements of bearing
may be subjected to the spinning ball effect, increasing wear e
in the absence of rotational motion. The same effect underlies
following phenomenon, namely, that, at times, screws beco
loose when subject to linear vibrations. An understanding of
spinning ball problem may help in preventing these undesira
effects.

Fig. 8 Portions of the time histories of q 1 „thin line … y , and ẏ
for fÄ730 Hz
DECEMBER 2000, Vol. 67 Õ 725
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The Fiber Composite With
Nonlinear Interface—Part I: Axial
Tension
This paper treats the effective axial tension response of a composite consisting of
that debond from the matrix according to nonlinear Needleman-type cohesive zon
second, related paper (Part II) treats effective antiplane shear response. The com
cylinders representation of a representative volume element (RVE) is employed thr
out. For axial tension loading a simple rotationally symmetric boundary value prob
for a single composite cylinder is solved. Bounds on the total potential energy an
total complementary energy are shown to coincide and an exact solution for axial e
sion and Poisson contraction of an RVE of the composite is obtained. Nonlinear int
cial debonding, however, is shown to have a negligible effect on extensional respons
only a small, though potentially destabilizing, effect on Poisson contraction respo
@S0021-8936~00!02004-3#
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1 Introduction
This paper~Part I! is concerned with the effective tensile re

sponse of unidirectional randomly arrayed fiber composites c
taining interfaces that suffer nonlinear displacement discontin
ties. A companion paper~Part II! treats antiplane shear of thi
class of composite. Previous work on the nonlinear interface c
posite has dealt with the case of loading transverse to the
direction. In particular, transverse bulk response has been
lyzed using Hashin’s composite cylinder model1 ~@1#! and trans-
verse shear response has been studied employing the dilute
mate ~@2#! and the Mori-Tanaka model~@3#!. All of this work,
including the present pair of articles, assumes that separation
phenomena at a fiber-matrix interface can be captured by unif
Needleman-type cohesive zones of vanishing thickness~@4#!. Al-
though our formulation can accommodate general interface c
stitutive relations in this paper we employ a model, derivable fr
a potential, which allows for interface failure in normal mode, t
shear mode being inactive due to the nature of the geometry
the loading.

Formally, the axial tension problem is no different than t
transverse bulk problem in that we employ the direct method
composite materials theory together with a geometrical mode
estimate the uniform fields associated with the fiber phase. H
we employ the composite cylinder representation of a represe
tive volume element~RVE! ~@5#! exclusively. It can be shown tha
the constitutive relation for a single composite cylinder, subjec
axial ~or transverse radial! tension, is of the form

s5F~«,x1,x2,c,v0!,
(1)

G0~«,x1,x2,c,v0 ,jk!50.

In ~1! s, « are corresponding mean effective stress and st
components;x1,x2 are elastic properties of matrix and fibe
respectively;c is the volume concentration of fiber; and thejk ,
k51,2, . . . areinterface constitutive parameters. Relation~11! is

1It can be shown that the response is identical to that predicted by the three-p
model.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
7, 1999; final revision, June 25, 2000. Associate Technical Editor: I. M. Dan
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the effective property relation for a single composite cylinder. T
internal variablev0 is the uniform interface displacement disco
tinuity and appears in~11! through expressions for the uniform
strain in the fiber phase and a component of the displacem
discontinuity tensor.2 Relation~12! is determined from the inter-
face boundary condition for the composite cylinder and it depe
explicitly on the interface constitutive relation prescribed in t
form of an interface force-displacement discontinuity relatio
The formulation resulting in~1!, for a single composite cylinder
is then mapped onto an entire RVE via the composite cylind
construct. The elastic fields obtained from the uniform str
boundary value problem and the uniform stress boundary va
problem are then used to bound the true response of the RV
the bounds coincide then there is an exact solution for the ef
tive response of an RVE. Note that although the framework p
sented in~1! bears a resemblance to continuum damage cons
tive models, the equations are not, however, postulated a pr
They arise naturally from the direct method of composite mat
als theory, a particular representation of an RVE and a partic
interface constitutive relation.

In the next section we consider axial tension of a single co
posite cylinder and derive equivalent constitutive relations g
erning its response. In the section that follows we use variatio
arguments to show that equations developed for the compo
cylinder apply to an RVE consisting of a volume-filling configu
ration of composite cylinders of varying diameters. In particul
the effective property relation and the single evolution equat
governing the uniform interface separation variable are shown
variational bounding to characterize the exact solution for ax
tension of the RVE. Sections on Poisson contraction, limit
cases, and predictions follow. Overall, the treatment is straight
ward and the results extend those obtained for axial tension
sponse of rigid interface composites~@5#!, and linearly separating
interface composites~@6#!. We conclude the paper with a brie
summary of pertinent results.

2 The Composite Cylinder
Consider the composite cylinder shown in Fig. 1. The fiber h

elastic modulusE2 and Poisson ration2 and occupies domainV.
The matrix has elastic propertiesE1,n1 and occupies domain
B-V. Orient a Cartesian coordinate system with origino and basis
$e1 ,e2 ,e3%, and a cylindrical coordinate system with bas

hase

y
iel.
essor
on,
li- 2The difference between the applied boundary strain and the mean strain o
composite cylinder.
000 by ASME DECEMBER 2000, Vol. 67 Õ 727



f

e

t

o
p

t

n

l-
r of
ean
te

e

d,
es.
n-
ble
the

re

the
at

nse

t’s

use

nsor.
$er ,eu ,ez5e3%, such that the fiber axis points in thee3 direction.
Assume that the end caps are subjected to a displacementEHr
where EH is a uniform strainEH5Err er ^ er1Euueu ^ eu1ee3
^ e3 andr (x) is the position vector from the origino to a pointx
on the bases. Throughout this section we assume all elastic fi
are rotationally symmetric so that the displacement field is of
form, u5ur(r )er1uz(z)ez . Rotationally symmetric solutions o
Navier’s equation, the stress-displacement relations, and the
form strain boundary condition are given by

u5a1rer1ezez ,

S5~2~l21m2!a11l2e!@er ^ er1eu ^ eu#

1~2l2a11~l212m2!e!ez^ ez ,

r P~0,R1!,
(2)

u5~a2r 1a3r 21!er1ezez ,

S5~2~l11m1!a222m1a3r 221l1e!er ^ er1~2~l11m1!a2

12m1a3r 221l1e!eu ^ eu1~2l1a21~l112m1!e!ez^ ez ,

r P~R1 ,R2!,

where~l, m! are the Lame´ moduli andS is the stress tensor. Th
constants (a1 ,a2 ,a3) appearing in~2! are obtained from interface
boundary conditions atr 5R1 and the stress-free boundary cond
tion on the lateral surface,

Lim s~er !5sI~er !, r↑R1 ,

Lim s~2er !52s1~er !, r↓R1 , (3)

s~er !50, r 5R2 ,

wheres(n) is the traction vector on a surface with normaln. The
vector sI(n) characterizes the constitutive characteristics of
interface and may be written in the form

sI~n!5 f ~u!n (4)

whereu is the normalized interface displacement jump in norm
mode,u5@ur #/R1 , andf is a prescribed function. The constitutiv
hypothesis~4! may be expressed in more general terms that
clude two additional tangential components of interface tracti
All functions then depend on three displacement jump com
nents and possibly the interface coordinates as well. Owing
rotationally symmetric solutions for the displacement and an
sumed uniformity of interface these additional terms are abs
from ~4!.

Boundary conditions~3! and~4! can be employed in a straigh
forward manner to determine constants (a1 ,a2 ,a3),

a15
f ~u!2l2e

2~l21m2!
, a25

2c f~u!

2~l11m1!~12c!
2

l1e

2~l11m1!
,
(5)

Fig. 1 Composite cylinder geometry
728 Õ Vol. 67, DECEMBER 2000
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wherec, the fiber volume concentration, is given by (R1 /R2)2.
With the aid of~5! the elastic fields~2! can be written in terms of
the unknown interface displacement jumpu. In particular, the
equation governing this quantity follows directly from the relatio

u5R1
21@Lim

r↓R1

ur~r !2Lim
r↑R1

ur~r !# (6)

and the elastic field solution foru"er in the matrix and in the fiber.
The resulting equation is of the form

u1a f ~u!2he50,

a5
c

2~l11u1!~12c!
1

1

2m1~12c!
1

1

2~l21m2!
, (7)

h5
l2

2~l21m2!
2

l1

2~l11m1!
5n22n1.

With the prescription off and the solution of~7! the elastic field in
the composite cylinder is completely determined.

An equivalent3 axial constitutive relation for the composite cy
inder may be obtained by requiring a homogeneous cylinde
identical geometry and loading to have the same axial m
stress, i.e.,s5ez"S̄ez , whereS̄ is the mean stress of the composi
cylinder defined by

S̄5
1

vol~B! EB
Sdv. (8)

Utilizing ~2! and ~5! results in the equivalent axial constitutiv
relation for the composite cylinder,

s5EMe12c~n22n1! f ~u!, (9)

where

EM5 bcE21~12c!E1c. (10)

~Note that the second term on the right-hand side of~9! is propor-
tional to the difference in Poisson ratio of matrix and fiber an
when it vanishes, the resulting expression is the rule of mixtur!
Thus,~7! and~9! completely characterize the equivalent axial co
stitutive response of the composite cylinder provided a suita
form of interface force-separation relation is prescribed. In
next section we show that the equivalent constitutive model~7!
and ~9! is in fact the effective constitutive relation for an enti
RVE provided certain geometrical constraints are satisfied.

The analysis of the traction boundary value problem for
composite cylinder is carried out in similar fashion. Note th
although we utilize a uniform traction boundary condition (s(n)
5sez) applied to the end caps to compute the equivalent respo
of the composite cylinder, we may take the previous solution~2!,
~5! ~for displacement boundary conditions! as the solution to the
traction problem. We justify this on the basis of Saint-Venan
principle, which asserts the validity of solution~2!, ~5! away from
the cylinder ends. Thus, we interpretsez as the mean applied
traction on the end caps. To compute the equivalent response
the ez^ ez component of the effective property relation~@7,8#!

e5
1

E1 s1cS 1

E22
1

E1DSzz
22cS n2

E22
n1

E1D ~Srr
21Suu

2 !1A,

(11)

wheres is the mean applied axial stress on the cylinder ends,e is
the axial mean effective strain,4 Srr

2 ,Suu
2 ,Szz

2 , are the cylindrical
components of the mean stress in the fiber phase, andA is the
ez^ ez component of the displacement discontinuity tensor~this

3Distinct from an effective constitutive relation for an RVE.
4Generally the sum of the mean strain and the displacement discontinuity te
Transactions of the ASME
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term is exactly zero for the given loading!. Equations~2!, ~5!, and
~11! imply that the equivalent axial constitutive relation, for tra
tion boundary conditions, is identical to that computed for d
placement boundary conditions~~9!!.

3 Variational Bounding
Now the composite cylinders model requires the geometry

the RVE to consist of long cylindrical fibers each of which
surrounded by a cylindrical cage of matrix material. In order
obtain a volume filling configuration composite cylinders are
sumed to vary in diameter down to the vanishingly small. T
geometry, along with the requirement of identical mean stres
and strains in each composite cylinder composing the RVE,
cessitates the satisfaction of certain geometrical constraints
particular, the cylinders must be geometrically similar, i.e.,
ratio R1 /R2 must be fixed. In addition, because the interface fo
law ~4! generally requires an additional length scale for its p
scription, additional constraints may need to be prescribed
terms of it. We will comment on this later on in the sequel~Sec-
tion 6! after we specify a form of interface constitutive functionf.
For now, assume that all geometrical constraints are satisfie
that mean stress and strain fields computed from~7! and ~9! are
identical for all composite cylinders forming the volume fillin
composite cylinders geometry.

In order to prove that relations~7!, ~9! apply to an entire RVE
of the composite we follow the analysis of the transverse b
response of nonlinear interface composites~@1#!. This treatment
utilizes the energetic arguments of Hashin and Rosen@5#. Thus we
show that upper and lower bounds to the true strain energy o
composite, based on admissible fields obtained from the com
ite cylinder displacement and traction problems, coincide. Fi
assume that the displacement field in a composite cylinder, w
displacement vectoru5EHr prescribed on its end caps, forms
kinematically admissible displacement field5 for the displacement
in the entire RVE of the composite. This follows from the fact th
a rigid-body displacement superimposed on the boundary
placement of a composite cylinder, while leaving the strain ene
unaffected, renders homogeneous boundary displacements fo
RVE. Now the potential energyF$e% stored in a single composit
cylinder subject to the displacement boundary condition can
calculated from~2!, ~5!, and~7! and is given by

F$e%5H 1

2
@~12c!E11cE2#e21

c

p E
0

2p

« Idu

1S c~11n2!~122n2!

E2 1
c2~11n1!~122n1!

~12c!E1

1
c~11n1!

~12c!E1D f 2J v~B!, (12)

where«1 is the interface potential defined by

« I5Eu

f dt, (13)

andv(B) is the volume of the composite cylinder.~Note that the
vanishing of the derivativeDuF implies relation ~7! while s
5De@v21(B)F$e%# implies relation~9!.! An upper bound to the
potential energy for the representative volume element of
composite, based on the admissible displacement field
F$e%v/v(B) wherev is the volume of the representative volum
element.

Next, assume that the homogeneous stress field, produce
the traction boundary conditions(n)5sez applied to the end cap
of the composite cylinder, is a statically admissible stress fie6

5One that satisfies the displacement boundary condition and is twice continuo
differentiable.

6One that satisfies the equilibrium equation and traction boundary condition
Journal of Applied Mechanics
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for the entire representative volume element. Then the com
mentary energy for a single composite cylinder may be de
mined in a manner similar toF and is given by

C$s%5H 1

2@~12c!E11cE2#
s21

c

p E
0

2p

« ICdu

2
2c~n22n1!

@~12c!E11cE2#
s f 1S 2c2~n22n1!2

@~12c!E11cE2#

1
c2~11n1!~122n1!

~12c!E1 1
c~11n1!

~12c!E1

1
c~11n2!~122n2!

E2 D f 2J v~B!, (14)

where« IC is defined by

« IC5E f

udt, (15)

and use has been made of~2!. ~The vanishing of the derivative
D fC yields the relation

u1S a1
2ch2

EM
D f ~u!2

h

EM
s50, (16)

wherea, h are defined in~7! and EM is defined in~10! while e
5Ds@v21(B)C$s%# yields ~9!.! An upper bound to the comple
mentary energy for the representative volume element of the c
posite, based on the statically admissible stress field, is then g
by C$s%v/v(B). The potential~complementary! energy given by
~12! ~~14!! may be regarded as the strain~stress! energy for an
equivalent homogeneous cylinder owing to the displacem
~traction! condition applied on its end caps. Upper and low
bounds on the true strain energy~U! of the displacement problem
follow from the bounding theorem~@9#!.

E
]B

s̄"ûda2UK$S̄%<U<UC$Ẽ%, (17)

whereẼ is a kinematically admissible strain field,S̄ is a statically
admissible stress field withs̄ the corresponding surface traction
and UK$S̄%(UC$Ẽ%) the stress~strain! energy. For the presen
problem~17! may be written as

2sev2C$s%v/v~B!<U<F$e%v/v~B!, (18)

whereF, C are given by~12!, ~14!. We need to show that the
bounds onU shown in~18! coincide. First note that, as required
combining~9! and~16! recovers~7! so the constitutive relation for
a single composite cylinder, based on uniform strain and unifo
stress boundary conditions, is the same. Next, to show equ
lence of bounds simply substitute~9!, ~16! into ~14! and note that

« IC5u f2« I . (19)

Thus, the true strain energy of an RVE of the composite is giv
by U5F$e%v/v(B) and the stress-strain relation~9! and ~7! ~or
~16!! follows from

s5
1

v

]U

]e
, 05

1

v

]U

]u
. (20)

4 Effective Poisson Contraction
The lateral response of the composite, when subjected to a

loading, can be obtained in a straightforward manner since
upper and lower bounds to the strain energy of the RVE coinc
Thus, from~2! and ~5!, compute radial strainErr , or circumfer-

usly
DECEMBER 2000, Vol. 67 Õ 729
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ential strainEuu , and evaluate it on the outer boundaryr 5R2 of
the composite cylinder,

Err 5Euu5n1e1
2c

12c

12n12

E1 f ~u!. (21)

Equation~21!, when coupled to~7!, completely characterizes th
transverse strain of the RVE due to axial tension.
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5 Limiting Cases

Limiting conditions of rigid interface behavior may be obtaine
as follows. Set the interface displacement jumpu to zero so that
the interface force becomes, by~7!, f (0)5he/a, whereh anda
are defined in~7!. When this value off (0) is substituted into~9!
and ~21! we get
E* 5cE21~12c!E11
c~12c!E2E1~n22n1!2

c~11n1!~122n1!E21~11n1!E21~11n2!~122n2!E1 ,
(22)

n* 5cn21~12c!n11
c~12c!@~11n1!~122n1!E22~11n2!~122n2!E1#~n22n1!

c~11n1!~122n1!E21~11n1!E21~12c!~11n2!~122n2!E1 ,
e of
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whereE* (5s/e), n* (52Err /e) are the effective stiffness an
Poisson ratio, respectively. These results are the same as
obtained by Hashin and Rosen@5#. For Poisson contraction th
limiting condition of the voided composite follows in similar fash
ion by substitutingf (u)50 into ~21!. However, for axial exten-
sion the condition of voided composite obviously does not foll
by putting f (u)50 in ~9!. When there is vanishing interface forc
~9! implies that axial response follows a rule of mixtures exac

6 Predictions
Predictions of effective axial tension response follow from~7!,

~9!, ~10!, and~21! provided we specify the normal interface forc
separation relationf. For the remainder of this section we utiliz
the physically based model of Ferrante et al.@10# which allows
for decohesion in normal mode.~Needleman has utilized gene
alizations of this model in numerous studies of debonding. S
for example, Needleman@11# for a numerical unit cell analysis o
the plane strain problem.! Strictly, the interface model is derive
for crystalline materials and the parameters arising in it hav
precise physical meaning. Here we employ the model in a m
general context and interpret the parameters as phenomenolo
to be determined from experiment. In this work the interface fo
law will be taken in the form

f ~u!5exp~1!sMAX ~u/r!exp~2u/r!, (23)

wherer is the characteristic force length ratio~characteristic force
length normalized with respect toR1! and sMAX is the interface
strength. Note that the maximum value off is sMAX , which oc-
hose
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curs atu5r, and the interface tractionf vanishes asymptotically
with increasingu ~Fig. 2!. Furthermore, if~23! is substituted into
~7! and~9!, and the normalized displacement jumpu is written as
rv, then it is clear that in order to ensure equivalent respons
composite cylinders of varying sizes the ratiosc(5(R1 /R2)2),
andr must be held fixed. This unphysical result, which has be
noted in Hashin@12# in the context of linearly separating inter
faces, requires that the characteristic force length of a partic
composite cylinder interface must vary in direct proportion to t
fiber radius. Nevertheless from hereon we assume that this is

Owing to the fact that the axial stress of the composite R
depends on the product of the interface force and the differenc
Poisson ratio of matrix and fiber~see~9!! the effect of nonlinear
interface response can be expected to be small. Clearly the g
est deviation from the rule of mixtures occurs when the differen
in Poisson ration22n1 is at its largest positive value. Howeve
even when this occurs plots of response reveal only a neglig
deviation from the rule of mixtures.

Graphs of effective Poisson contraction reveal a more sign
cant interface effect. Figure 3 shows plots of radial strain ver
axial strain at different values of fiber volume concentration
interface force length parameterr5.001. All other properties are
fixed at the values

n25.45, n15.25,
sMAX

E1 5.002,
E2

E1 521. (24)

Also shown is pure matrix response and pure fiber response. C
sider the curve drawn atc5.5 in Fig. 3 and note that the fibe
Fig. 2 The normal interface force law
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Fig. 3 Effect of concentration on Poisson contraction response, rÄ0.001

Fig. 4 Effect of force length ratio on Poisson contraction response, cÄ0.5
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Poisson ratio exceeds the matrix value. For small values of a
strain the radial contraction of the RVE exceeds that of the ma
value owing to the relatively large radial tensile tractions th
develop on the interfaces. With increasing axial strain the fi
pulls away from the matrix. The interface tractions decrease
the overall radial contraction of the composite approaches tha
the voided composite or matrix. The interface parameters cho
permit brittle decohesion and the process involves an abrupt t
sition to matrix behavior. Naturally the magnitude of the pheno
enon decreases with decreasing fiber volume concentration.

Consider now a situation in which the matrix Poisson ratio
greater then the fiber value~graph not shown!. For small values of
axial strain the radial contraction of the RVE is smaller than
matrix value, owing to the relatively large radial compressive tr
tions that develop on the interfaces. Because the interface f
law effectively eliminates fiber-matrix interpenetration we obta
behavior, which closely follows rigid interface response~discrep-
ancies arise due to small amounts of interpenetration at the in
faces ~see Fig. 2!!. Clearly, as the fiber volume concentratio
decreases we approach matrix response.

Finally, Fig. 4 shows a graph of radial strain versus axial str
at different values of interface force length parameterr. The fiber
volume concentration is assumed fixed at 0.5 and all other p
erties are as given in~24!. In all cases a transition occurs from
rigid interface response, on initial application of the load, to vo
behavior as the interface fully separates. The effect of decrea
r on behavior is clearly demonstrated as the response cha
from gradual contraction under increasing axial strain to an ab
decrease in the magnitude of the radial contraction as the inter
unloads.
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7 Concluding Remarks
An analysis of the axial tension response of a composite

been carried out assuming that matrix and fiber interact throug
normal, nonlinear interface force-displacement discontinuity re
tion. The particular homogenization method employed to p
from local response to aggregate response is the composite c
ders construct~@5#!. Upper and lower bounds to the total potenti
energy of a composite RVE have been shown to coincide so
exact solution exists for the composite cylinders geometry. Ov
all, however, the effect of interface characterization on ext
sional response is virtually nil and essentially follows a ‘‘rule
mixtures.’’ The effect of the interfaces on Poisson contraction
somewhat greater with the nature of the behavior largely dep
dent on the sign of the difference in Poisson ratio of matrix a
fiber.

Some features of Poisson contraction response are that inc
ing fiber volume concentration~c! ~i! increases the magnitude o
the lateral strain jump at brittle decohesion,~ii ! delays the onset of
brittle decohesion, and~iii ! increases the initial Poisson contra
tion over pure matrix response. Additionally, decreasing the fo
length ratio~r! ~i! precipitates a transition from ductile to brittl
composite response,~ii ! encourages the onset of brittle decoh
sion, and~iii ! increases the initial Poisson contraction.

Note that these results~and analogous results for other loa
ings! have been demonstrated to hold only for a particular int
face force law and specific parameter values. Furthermore,
are based solely on the composite cylinders geometry. Altho
the sensitivity of the overall behavior to variations in microstru
ture and microstructural arrangement is unknown, we should
DECEMBER 2000, Vol. 67 Õ 731
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pect that the sensitivity of the local behavior to these factors
likely be high. Consider the fact that cavity formation by interf
cial decohesion occurs in a nonuniform progressive man
throughout the composite and that this feature is not capture
the present model. Further development of these kinds of mo
in this regard is probably worth the effort given their ability
predict global damage behavior based solely on the constitu
characteristics of the constituents. Naturally such developm
must proceed alongside a vigorous experimental program.
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The Fiber Composite With
Nonlinear Interface—Part II:
Antiplane Shear
This paper treats the effective antiplane shear response of a composite consisting of
that interact with the matrix through nonlinear Needleman-type cohesive zones. Th
paper (Part I) examines effective axial tension response. The composite cylinders
sentation of a representative volume element (RVE) is employed throughout. For
plane shear loading the elastic field solution for a single composite cylinder is foun
the form of a series expansion whose coefficients are governed by an infinite
nonlinear equations. Bounds on the total potential energy and the total compleme
energy of an RVE do not coincide although they are shown to differ by a term of o
O~c4! where c is the fiber volume concentration. Interaction effects due to finite vo
concentration, coupled with nonlinear interface characterization, are shown to pre
tate instability in composite response.@S0021-8936~00!02104-8#
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1 Introduction
This paper~Part II! presents a study of the effective antipla

shear response of randomly arrayed fiber composites conta
interfaces that can slip nonlinearly. The first related paper~Part I!
examines axial tension response. In both parts we assume
fiber-matrix interface discontinuities are governed by unifo
Needleman-type cohesive zones of vanishing thickness~@1#!. In
Part I the elastic fields of a single composite cylinder subjec
axial tension were used along with the composite cylinders c
struct ~@2#! and variational bounding to obtain an exact soluti
for the response of the representative volume element~RVE!. In
this paper we employ the same homogenization method assu
a potential interface constitutive model which allows for interfa
failure in shear mode.

The more complicated antiplane shear problem cannot be p
the simple framework of the axial tension problem~see~1! of Part
I!. This is because the slip discontinuity at the fiber matrix int
face is a function of interface coordinate whereas the interf
separation discontinuity under axial tension is uniform, indep
dent of interface coordinate. It will be shown, however, that
constitutive relation for a single composite cylinder may be w
ten in the form

t5F~g,x1,x2,c,v i !, (1)
Gi~g,x1,x2,c,v j ,jk!50, i 50,1,2, . . . ,

where t, g are corresponding mean effective shear stress
strain components;x1, x2 are elastic properties of matrix an
fiber, respectively;c is the volume concentration of fiber; and th
jk , k51,2, . . . areinterface constitutive parameters. Relatio
~11! is the effective property relation for the composite cylind
The set of internal variablesv i , i 50,1,2, . . . are theexpansion
coefficients of the interface slip discontinuity field and appear
~11! through expressions for the mean strain in the fiber phase
the displacement discontinuity tensor.1 Relations~12! are deter-
mined from the interface boundary condition for the compos

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
7, 1999; final revision, June 25, 2000. Associate Technical Editor: I. M. Dan
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.

1The difference between the applied boundary strain and the mean strain.
Copyright © 2Journal of Applied Mechanics
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cylinder and depend explicitly on the interface constitutive re
tion prescribed in the form of a tangential interface force-s
discontinuity relation. Homogenization via the composite cyl
ders representation and variational bounding then follow in
manner similar to that in Part I.

In the next two sections we consider antiplane shear of a sin
composite cylinder and derive equivalent constitutive relatio
governing its response. The treatment extends the results obta
for antiplane shear response of rigid interface composites~@2#!,
and linearly separating interface composites~@3#!. In particular,
Section 2 is concerned with the displacement boundary va
problem while Section 3 treats the traction boundary value pr
lem. In Section 4 we use variational arguments to bound the
sponse of an RVE consisting of a volume-filling configuration
composite cylinders of varying diameters. Unlike its rigid or li
ear interface counterparts the bounds do not coincide so an e
solution does not exist. The results obtained under uniform st
and uniform stress boundary conditions must therefore be in
preted as bounds on overall behavior. These bounds, howeve
shown to differ by a term of orderO(c4) so that the stress-strai
response may be accurately predicted by uniform stress or s
boundary conditions providedc is not very large. We conclude th
paper with a brief discussion on the utility of modeling compos
damage by homogenizing the response of a single compo
cylinder.

2 The Displacement Boundary Value Problem
Hashin and Rosen@2# have solved the problem of antiplan

shear of a single composite cylinder composed of a cylindr
fiber rigidly bonded to an annular cylinder of matrix materia
Here we generalize that analysis to include nonlinear interf
response.

Consider the composite cylinder shown in Fig. 1. Followi
Hashin and Rosen@2# we begin with Navier’s equation for isoch
oric deformation (divu50),

Du50, (2)

subject to a uniform strain boundary condition on the outer cy
drical surface,

EH5
g

2
~e1^ e31e3^ e1!, on r 5R2 . (3)

y
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~The traction boundary value problem will be considered in
following section.! If the displacement due to the rigid rotatio
field

W5
g

2
~e1^ e32e3^ e1! (4)

is superimposed on the displacement resulting from~3!, then the
resulting boundary displacement may be written in polar coo
nates in the form

u5gz cosuer2gz sinueu , on r 5R2 . (5)

We seek solutions to the problem~2! and ~5! in the fiber domain
V5$(r ,u):r P(0,R1),uP(0,2p)%, and in the matrix domainB
2V5$(r ,u):r P(R1 ,R2),uP(0,2p)% for the case where the in
terface boundary condition is a prescribed nonlinear function
tangential interface displacement discontinuity. Thus, in addit
to ~5! prescribe

s~er ;r ,u!5g~u!ez , on r↑R1 , r PV
(6)

s~2er ;r ,u!52g~u!ez , on r↓R1 , r PB2V

whereg is taken to be an even function ofu.2 The problem is now
completely posed, provided we insure bounded solutions by
forcing regularity at the origin

Lim u bounded, r↓0. (7)

Now assume a form of solution, valid in both domains,

ur5(
n50

`

dn~z!cosnu, uu5(
n50

`

hn~z!sinnu,

(8)

uz5(
n50

`

f n~r !cosnu.

It can be shown~see the Appendix! that ~8! will satisfy Navier’s
equation provided that the sets of functions$dn%, $hn%, $ f n% are
such that~8! may be expressed in the form

ur5~A111A12z!cosu,

uu52~A111A12z!sinu, (9)

uz5C101C20 log r 1(
n50

`

~C1nr n1C2nr 2n!cosnu,

whereA11, A12, C10, C20, $C1n%, $C2n% are constants. It remain
to determine the constants for the fiber and matrix domains f
the boundary and regularity conditions.

2Ultimately, g will depend onuz , which is an even function ofu.

Fig. 1 Composite cylinder geometry
734 Õ Vol. 67, DECEMBER 2000
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For the fiber domainV the boundary conditions (61) and~7! fix
the constantsC20, $C1n%, $C2n% so that the displacement field i
given by

ur
25~A111A12z!cosu,

uu
252~A111A12z!sinu, (10)

uz
25C101

R1

m2 (
n51

`
1

n
gnS r

R1
D n

cosnu,

wherem2 is the shear modulus of the fibers andgn are the mode
multipliers in the expansion forg, i.e.,

g~u!5(
n50

`

gn cosnu, g05
1

2p E
0

2p

g~u!du,

(11)

gn5
1

p E
0

2p

g~u!cosnudu.

~Note that the constant termg0 in the expansion is required to
vanish in order to insure overall global equilibrium of the fibe!
The remaining constants appearing in~10!, i.e.,A11,A12,C10, can
be identified with the rigid-body displacement,

uR5u01Wr , u05u01e11u03e3 , W5v~e1^ e32e3^ e1!,
(12)

so that the elastic field in the fiber may be written as

ur
25~u011vz!cosu,

uu
252~u011vz!sinu,

uz
25u03

2 2vr cosu1
R1

m2 (
n51

`
1

n
gnS r

R1
D n

cosnu, (13)

Srz
25(

n51

`

gnS r

R1
D n21

cosnu,

Suz
2 52(

n51

`

gnS r

R1
D n21

sinnu.

For the matrix domainB-V the boundary conditions~5! and
(62) determine the constants appearing in~9! so that the elastic
field in the matrix is

ur
15gz cosu,

uu
152gz sinu,

uz
15S 2gc

11cD S r 2
R2

2

r D cosu

1
R2

m1 (
n51

`
c~n11!/2

n~11cn!
gnF S r

R2
D n

2S R2

r D nGcosnu, (14)

Srz
15m1g cosu1(

n51

`
c~n11!/2

~11cn!
gnF S r

R2
D n21

1S R2

r D n11Gcosnu,

Suz
1 52m1g sinu2(

n51

`
c~n11!/2

~11cn!
gnF S r

R2
D n21

2S R2

r D n11Gsinnu,

where m1 is matrix shear modulus andc is the fiber volume
concentration defined to be (R1 /R2)2. Now g is the tangential
interface force, which is generally a function of normalized ta
gential displacement discontinuity at the fiber-matrix interfa
Thus,g(w(u))3 wherew is defined by

3We assume the interface is uniform, i.e.,g is dependent on coordinateu implic-
itly only throughw.
Transactions of the ASME
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w5@u#"ez /R15~uz
12uz

2!/R1 . (15)

Radial and angular displacement jump components@u#"er /R1

5(ur
12ur

2)/R1 , and@u#"eu /R15(uu
12uu

2)/R1 may be assumed
to vanish implying thatu0150 andv5g by ~13! and ~14!.

Becausew is unknown we need to solve for it from an interfa
cial integral equation. This can be obtained by subtracting (13)
from (143), equating the result to~15!, and noting the expansion
~11!. Thus,

w~u!5w01
2

11c
g cosu2E

0

2p

Kg~u2u8!g~w~u8!!du8,

(16)

Kg~u2u8!5
1

p (
n51

` S 12cn

11cn

1

m1 1
1

m2D 1

n
cosn~u2u8!.

In ~16! the constant term in the expansion forw, i.e., the uniform
slip modew0 , is indeterminate. A determinate set of equatio
governingw is obtained by coupling to~16! the integral equation
resulting from rigid-body force equilibrium

1

2p E
0

2p

g~w~u!!du50. (17)

The solutionw, to the nonlinear integral Eqs.~16! and ~17!, is
obtained in the form of a Fourier expansion

w~u!5w01(
n51

`

w2n21 cosnu. (18)

Expansion~18!, together with orthogonality of eigenfunctions, r
duces the governing integral equations to an infinite set of non
ear algebraic equations4

1

2p E
0

2p

g~wi ;u!du50,

w11
1

p S 12c

11c

1

m1 1
1

m2D E
0

2p

g~wi ;u!cosudu5
2

11c
g,

(19)

w2n211
1

np S 12cn

11cn

1

m1 1
1

m2D E
0

2p

g~wi ;u!cosnudu50,

n52,3, . . . .

Throughout the remainder of the paper we assume that interfa
slip w is antisymmetric with respect to thee2-e3 plane so thatw is
of the form

w~u!5(
n51

`

w4n23 cos~2n21!u. (20)

It is a straightforward matter to show that solution~20! satisfies
~19! with w05w4n2150, n51,2, . . . Thus, we work with the
reduced set

w11
1

p S 12c

11c

1

m1 1
1

m2D E
0

2p

g~wi ;u!cosudu5
2

11c
g,

(21)

w4n231
1

~2n21!p S 12c2n21

11c2n21

1

m1 1
1

m2D
3E

0

2p

g~wi ;u!cos~2n21!udu50, n52,3, . . . .

With the prescription ofg the solution to~21! can proceed and the
complete elastic field follows from~11!, ~13!, and~14!.

4This procedure has been utilized by the author in a different context, mos
cently in Dong and Levy@4#.
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An equivalent antiplane constitutive relation for the compos
cylinder may be obtained from thee1^ e3 component of the effec-
tive stiffness relation~@5,6#!

t5m1g12c~m22m1!
S13

2

2m222m1A13, (22)

where t is the mean shear stress on the lateral surface of
cylinder, g is twice the applied shear strain,S13

2 is the Cartesian
component of the mean stress in the fiber phase~obtained from
~13! or the mean stress theorem!, andA13 is thee1^ e3 component
of the displacement discontinuity tensor (A
5c/(2 vol(V)) *

]V
(@u# ^ n1n^ @u#)da) given by

A135
c

2p E
0

2p

w cosudu. (23)

Equations~22!, ~23!, and~19! yield the equivalent antiplane shea
constitutive relation for the composite cylinder~subject to a dis-
placement boundary condition!,

t5m1
12c

11c
g1

2c

11c

1

p E
0

2p

g~wi ;u!cosudu. (24)

3 The Traction Boundary Value Problem
Assume now that the composite cylinder of Fig. 1 is subjec

the traction boundary condition

s~er !5t cosuez , on r 5R2 ,

and, additionally, is subject to the interface boundary condit
~6! and the regularity condition~7!. An analysis of this problem,
similar to the one given above for the displacement proble
yields the elastic field in the matrix:

ur
15~u011vz!cosu,

uu
152~u011vz!sinu,

uz
15u03

1 2vr cosu1
1

12c F11cS R2

r D 2G t

m1 r cosu

2
R2

m1 (
n51

`
c~n11!/2

n~12cn!
gnF S r

R2
D n

2S R2

r D nGcosnu,

(25)

Srz
15

1

12c F12cS R2

r D 2Gt cosu

2(
n51

`
c~n11!/2

~12cn!
gnF S r

R2
D n21

2S R2

r D n11Gcosnu,

Suz
1 5

21

12c F11cS R2

r D 2Gt sinu

1(
n51

`
c~n11!/2

~12cn!
gnF S r

R2
D n21

1S R2

r D n11Gsinnu,

where u01,v,u03
1 represent a rigid-body displacement~12!. The

elastic field in the fiber is identical to that of the displaceme
problem and is given by~13!. The integral equations governin
the tangential displacement discontinuity~15! are obtained from
~13! and ~25!,

w~u!5w01
2

12c

t

m1 cosu2E
0

2p

Kt~u2u8!g~w~u8!!du8,

(26)

Kt~u2u8!5
1

p (
n51

` S 11cn

12cn

1

m1 1
1

m2D 1

n
cosn~u2u8!,re-
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wherew0 is determined from~17! which ensures rigid-body force
equilibrium. An expansion of the form~18! reduces~26! to the set

1

2p E
0

2p

g~wi ;u!du50,

w11
1

p S 11c

12c

1

m1 1
1

m2D E
0

2p

g~wi ;u!cosu du5
2

12c

t

m1 ,

(27)

w2n211
1

np S 11cn

12cn

1

m1 1
1

m2D E
0

2p

g~wi ;u!cosnudu50,

n52,3, . . . ,

which we reduce further by assumingw in the form ~20!, i.e.,
consider the reduced set consisting of~273! with n odd.

For the traction boundary value problem an equivalent con
tutive relation for the composite cylinder may be obtained fro
the e1^ e3 component of the effective compliance relation~@5,6#!

g5
t

m1 1cS 1

m22
1

m1DS13
2 1A13, (28)

with A13 in the form~23!. Combining~13!, ~23!, ~27!, and~28! the
equivalent constitutive for the composite may be written as

g5
11c

12c

t

m12
2c

m1~12c!

1

p E
0

2p

g~wi ;u!cosudu. (29)

4 Variational Bounding
In this section we derive bounds on the effective response o

RVE and show that in general~27!, ~29!, of the traction boundary
value problem, does not predict the same response as~19! and
~24! of the displacement boundary value problem. Throughout
employ the volume filling composite cylinders representation
an RVE introduced by Hashin and Rosen@2#. That is, a distribu-
tion of geometrically similar composite cylinders of varying siz
down to the vanishingly small such that all composite cylind
have identical mean stress and strain fields~see Section 6 for a
precise statement of the constraints that insure this!.

First, assume that the displacement field in a composite cylin
with displacement vectoru5gz cosuer2gz sinueu prescribed on
the surfacer 5R2 forms a kinematically admissible displaceme
field5 for the displacements in the entire RVE of the compos
Now the potential energyF$g% stored in a single composite cy
inder subject to the displacement condition can be calculated f
~13!, ~14!, and~21! and is given by

F$g%5
c

2 H (
n52

`
~2n21!m1m2~11c2n21!

~12c2n21!m21~11c2n21!m1 ~w4n23
g !2

1
12c

c~11c!
m1g21

m1m2~11c!

~12c!m21~11c!m1

3F 2g

~11c!
2w1

gG2

1
2

p E
0

2p

« IduJ v~B!, (30)

where« I is the interface potential defined by

« I5Ew

gdz, (31)

v(B) is the volume of the composite cylinder and a superscripg
indicates a quantity obtained from displacement boundary co

5One that satisfies the displacement boundary condition and is twice continuo
differentiable.
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tions. ~Note that the vanishing of the derivativesDwi
F imply

relations~21! while t5Dg@v21(B)F$g%# and (211) imply rela-
tion ~24!. An upper bound to the potential energy for the RVE
the composite, based on the admissible displacement field
F$g%v/v(B) wherev is the volume of the RVE.

Next, assume that the homogeneous stress field, produce
the traction boundary conditions(er)5t cosuez applied to the
boundaryr 5R2 of the composite cylinder, is a statically admi
sible stress field6 for the entire RVE. Then the complementa
energy for a single composite cylinder is given by

C$t%5
c

2 H (
n52

`
~2n21!m1m2~12c2n21!

~11c2n21!m21~12c2n21!m1 ~w4n23
t !2

1
11c

c~12c!

t 2

m1 1
m1m2~12c!

~11c!m21~12c!m1

3F24t 2

m12

1

~12c!2 1~w1
t !2G1

2

p E
0

2p

« ICduJ v~B!,

(32)

where a superscriptt indicates a quantity obtained from a tractio
boundary condition and use has been made of~13!, ~25!, and the
reduced form of~27!. Note that« IC is defined by

« IC5Eg

wdz. (33)

~The vanishing of the derivativesDgi
C imply the reduced form of

relations~27!, while g5Dt@v21(B)C(t)# yields ~29!. An upper
bound to the complementary energy for the RVE of the comp
ite, based on the statically admissible stress field, is then give
C$t%v/v(B). The potential~complementary! energy given by
~30! ~~32!! may be regarded as the strain~stress! energy for an
equivalent homogeneous cylinder owing to the displacem
~traction! condition applied to the boundary. Upper and low
bounds on the true strain energy~U! of the displacement problem
follow from the bounding theorem~@7#!:

E
]B

s̄"ûda2UK$S̄%<U<UC$Ẽ%, (34)

whereẼ is a kinematically admissible strain field,S̄ is a statically
admissible stress field withs̄ the corresponding surface traction
and UK$S̄%(UC$Ẽ%) the stress~strain! energy. For the presen
problem~34! may be written as

ggttv2C$tt%v/v~B!<U<F$gg%v/v~B!, (35)

whereF, C are given by~30!, ~32!.
Upper and lower bounds ofU in ~35! can be compared by firs

noting that« I of ~31! and« IC of ~33! are related according to

E
0

2p

« ICdu5p(
i 51

`

w4i 23g2i 212E
0

2p

«1du, (36)

where eigenfunction expansions forg ~~11!! and w ~~20!! have
been employed along with orthogonality of eigenfunctions. N
assumegt5gg5g. Substitute (272) into ~29! to eliminateg1 ~of
~11!!, and substitute the result into~35! to eliminatett. If we
utilize ~36! then the difference between the upper boundU1 and
the lower boundU2 may be written as

usly
6One that satisfies the equilibrium equation and traction boundary condition.
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2cm1m2@w1

g2w1
t #g

~12c!m21~11c!m1

1
1

2

m1m2c~11c!@~w1
g!22~w1

t !2#

~12c!m21~11c!m1 1
c

2 (
n52

`

3
~2n21!m1m2~12c2n21!@~w4n23

g !22~w4n23
t !2#

~11c2n21!m21~12c2n21!m1

22c(
n52

`

m1m2
~2n21!c2n21~w4n23

g !2

~m22m1!2c2~2n21!2~m21m1!2 .

(37)

Furthermore, it is not hard to show that~21!, the reduced form of
~27!, and~29! imply that

~w1
t2w1

g!1S ~12c!m21~11c!m1

pm1m2~11c! D
3E

0

2p

@gt~wi
t;u!2gg~wi

g;u!#cosu du50,

~w4n23
t 2w4n23

g !1S ~12c2n21!m21~11c2n21!m1

p~2n21!m1m2~11c2n21! D
3E

0

2p

@gt~wi
t ;u!2gg~wi

g ;u!#cos~2n21!u du

1
4c2n21

p~2n21!m1~11c2n21!~12c2n21! E0

2p

gt~wi
t ;u!

3cos~2n21!u du50, n52,3, . . . . (38)

Clearly if c50 in ~38!, corresponding to a single fiber embedd
in an unbounded matrix, thenw1

t5w1
g , w4n23

t 5w4n23
g . For c

Þ0 the last term on the left-hand side of (382) is O(c2n21) and
the implicit function theorem7 implies that w4n23

t 5w4n23
g

1O(c3) for all n51,2, . . . . Thus, from ~37! the difference be-
tween the upper and lower bounds is a term ofO(c4).

Note that for both rigid interface behavior and void behav
the upper and lower bounds coincide~@2#!. These well-known
results may be obtained as follows. For rigid interface behav
directly substitutew4n23

t 5w4n23
g 50, n51,2, . . . into ~37!. For

void behavior, g2n21
t 5g2n21

g 50, n51,2, . . . so that by ~21!

7This argument fails near bifurcation points of~21! and the reduced form of~27!.
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w4n23
g 50, n52,3, . . . and by ~38! w4n23

t 5w4n23
g , n

51,2, . . . .Then it follows from~37! that the bounds coincide.

5 Limiting Cases
The equations governing the effective response of the limit

cases of rigid interface behavior~wi50, i 51,2, . . .! and void
behavior~gj50, j 51,2, . . .! can be recovered directly from~21!
and ~24! or the reduced form of~27! and ~29!. Thus, for void
responsegi50, i 51,2, . . . sothat by ~24!

t5m1
12c

11c
g. (39)

Rigid interface response is obtained by substitutingg1

52gm2m1/@(12c)m21(11c)m1# from ~21! into ~24!. The
result is

t5F ~11c!m21~12c!m1

~12c!m21~11c!m1Gm1g. (40)

Both results~39! and ~40! are the same as that of Hashin an
Rosen@2#.

6 Predictions
In this paper we employ an interface constitutive relation, p

posed by Needleman@8#, which allows for shear failure of the
interface. The two-parameter potential model is of the form

g~w!5e1/2tMAX S w

r De21/2~w/r!2
, (41)

where r is the force length ratio~force length normalized with
respect to fiber radiusR1! and tMAX is the interfacial shear
strength. Note thattMAX is attained when the~normalized! tan-
gential interface displacement discontinuityw is equal tor. A
graph of~41! for various values of parameterr is shown in Fig. 2.
Note that in order to satisfy the requirement of identical me
stress and strain in each composite cylinder composing the R
the ratiosc(5(R1 /R2)2) and r must be held fixed. This can b
seen by introducing the variableswi5rv i into ~21!, ~24!, and
~41!.

Equation~41! together with the governing Eqs.~21!, ~24! for
displacement boundary conditions, or the reduced form of~27!,
~29! for traction boundary conditions, may be solved to obtain
bounds on shear stress-shear strain response. In this work a
puter program, employing the Newton-Raphson method toge
with the composite Simpson 1/3 Rule, was written to integrate
equations numerically. Computations were carried out for an
value of 9, which corresponds to nine shear modes (cos(2j21)u,
j 51,2, . . . ,9!. Figure 3 is a graph depicting these bounds
parameter values,
Fig. 2 The tangential interface force law
DECEMBER 2000, Vol. 67 Õ 737
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Fig. 3 Bounds on antiplane shear stress-strain response, cÄ0.5, rÄ0.01

Fig. 4 Effect of force length ratio on antiplane shear stress-strain response,
cÄ0.3

Fig. 5 Effect of concentration on antiplane shear stress-strain response, r
Ä0.01
r

nce

by a
aller
ther
es
m254375000 psi, m15185185 psi, tMAX 510,000 psi,

which are taken to hold for the remainder of the paper. In ad
tion, in Fig. 3, the fiber volume concentration~c! is assumed to be
0.5 and the force length ratio~r! is taken as 0.01. At these param
eter values there is an abrupt transition in response under inc
BER 2000
di-

-
eas-

ing stress corresponding to shear interface failure. The differe
in the bounds at this value ofc is inconsequential since it is
generally small and it occurs on a branch that is unreachable
continuous increase in stress from the reference state. At sm
values ofc the difference between the bounds decreases fur
and at values ofc corresponding to the dilute estimate the curv
Transactions of the ASME
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essentially coincide. From here on we study composite respo
obtained from governing equations for displacement bound
conditions, i.e.,~21! and ~24!.

Figure 4 is a graph of antiplane shear response at various va
of force length parameterr. The fiber volume concentration i
assumed fixed atc50.3. All curves undergo a transition from
bonded interface response at initial application of load to v
response corresponding to complete decohesion of the inter
Under decreasingr this transition changes from gradual to abru
Curves similar to those in Fig. 4 have been obtained for transv
response of fiber composites where the operative mechanis
normal separation under transverse equibiaxial load~@9#!, normal
separation under transverse shear load~@10#!, or normal separation
coupled to interfacial slip under transverse shear load~@4#!. This is
not surprising since the interface models used in these studie
derivable from a potential and have ascending branches and
scending branches that vanish asymptotically at infinity.

Figure 5 is a graph of antiplane shear response at various va
of fiber volume concentration~c! for fixed force length paramete
r50.01. The effect of increasingc is to ~i! increase the initial
stiffness of composite response,~ii ! elevate the shear strength o
the composite,~iii ! increase the magnitude of the jump in she
strain at that value of stress equal to the shear strength.

Finally, although we have not considered solution converge
explicitly in this paper it has been considered in Levy@11# for the
related problem of transverse response of a solitary fiber wh
debonds from the matrix according to a purely normal exponen
separation law. In that work it was demonstrated that the solu
converges quite rapidly and, in fact, the essential qualitative
tures of behavior under equibiaxial load are captured in onl
two-term approximation.

7 Concluding Remarks
An analysis of the effective antiplane shear response of a c

posite has been carried out assuming that matrix and fiber inte
through a tangential, nonlinear interface force-displacement
continuity relation. The particular homogenization method e
ployed to pass from local response to aggregate response i
composite cylinders construct~@2#!. For antiplane shear, bound
on the total potential energy of the composite have been comp
and they do not coincide although they have been shown to d
by a term of orderO(c4).

For both antiplane shear and axial tension the effect of fin
volume concentration on response is indicated in Fig. 5 of
paper and Fig. 3 of Part I~@12#!, respectively. The relationship o
the predicted behavior to physical reality is somewhat murky
underlines the inherent difficulties in modeling local failu
mechanisms based on homogenizing the results for a single c
posite cylinder. Clearly, the stochastic, progressive nature of fi
debonding coupled to the sensitivity of the process to local p
turbations from the assumed symmetry indicate the need for
ther refinement of the model presented here and in Part I. Ano
promising approach is numerical simulation based on the e
equations governing an N-particle system. Recently Sangani
Mo @13# have carried out an analysis of this type for linea
separating interfaces. For nonlinear interfaces, this approach i
without difficulties owing in part to bifurcation and stability issue
associated with multiple equilibrium solutions.
Journal of Applied Mechanics
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Appendix
We seek a general solution toDu50 in an annular or solid

cylindrical domain. In polar coordinates the governing equatio
are

Du"ez5
]2uz

]r 2 1
1

r

]uz

]r
1

1

r 2

]2uz

]u2 1
]2uz

]z2 50,

Du"er5
]2ur

]r 2 1
1

r

]ur

]r
1

1

r 2

]2ur

]u2 1
]2ur

]z2 2
2

r 2

]uu

]u
2

1

r 2 ur50,

(A1)

Du"eu5
]2uu

]r 2 1
1

r

]uu

]r
1

1

r 2

]2uu

]u2 1
]2uu

]z2 1
2

r 2

]ur

]u
2

1

r 2 uu50.

Assume a solution in the form

uz5(
n50

`

f n~r !cosnu, ur5(
n50

`

dn~z!cosnu,

(A2)

uu5(
n50

`

hn~z!sinnu.

Equation~A11! implies that

uz5C101C20 log r 1(
n51

`

~C1nr n1C2nr 2n!cosnu, (A3)

whereC1n ,C2n are constants. Equations~A12!, ~A13! imply that

ur5~A111A12z!cosu,

uu52~A111A12z!sinu. (A4)
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Bond-Induced Longitudinal
Fracture in Reinforced Concrete
Splitting of concrete caused by pullout of deformed rebars is investigated. The influen
specimen cross section size and geometry on the relationship between the compon
stress and relative displacement at the interface is evaluated. Phase measuremen
ferometry is used for accurate mapping of the splitting cracks. The measured c
profiles, material model, and a fracture criterion are used in a hybrid experimen
numerical approach to evaluate the unknown normal component of traction at the i
face.@S0021-8936~00!03603-5#
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1 Introduction
A considerable amount of research has been carried out in o

to understand the splitting of concrete due to bond action, an
better predict the ultimate bond capacity of rebars embedde
concrete. Nevertheless, the experimental results reported by
research community indicate big differences in estimates of b
strength. Nonlinear fracture mechanics analysis of partly crac
cylinders has been able to predict the splitting of concrete w
more success than methods based on strength criteria. Howe
rational link between the splitting of a cylinder caused by inter
pressure and bond strength is still missing. That is, the rela
between the components of stress~normal and tangential! gener-
ated by the rebar lugs needs to be determined.

The interface shear stress and the associated relative tang
displacement between the steel rebar and concrete have
termed ‘‘bond’’ and ‘‘slip,’’ respectively. Due to the materia
stiffness mismatch and the relatively poor tensile strength of c
crete, the interaction of the two materials leads to cracking
concrete. In general, the extent of elastic and inelastic defor
tions in the steel and concrete depends on the type of spec
~pullout, tension, etc.! in laboratory experiments, and on the cha
acteristics of the rebar surface~lugs, etc.!.

Bond-induced tensile cracking of concrete is classified in t
main categories. When the rebar axis is in the plane of fract
the crack is called ‘‘longitudinal,’’ and when the rebar axis pas
through the fracture plane it is called ‘‘transverse.’’ The relat
development of the shear stresst and normal stresss is an im-
portant factor governing the sequence of the development of
gitudinal versus transverse cracks. The development of th
crack types is not entirely independent of each other, adding to
complexity in predicting bond cracks~@1#!.

In this study, bond-induced longitudinal cracking~splitting! is
investigated. These cracks initiate from the steel-concrete in
face and propagate toward the concrete surface~Fig. 1!. Consid-
ering a typical pullout test that fails by splitting, the slip in th
initial stage is associated with the overall elastic deformation
addition to inelastic/crushing of concrete in front of the ribs~Fig.
1~a!!. In the second stage, longitudinal cracks develop at the
terface and propagate~Fig. 1~b!!. Crack bridging stress, and th
uncracked concrete ligament resist the internal pressure ind
by the rebar lugs. The cracks then propagate through the e

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
21, 1999; final revision, Feb. 16, 2000. Associate Technical Editor: K. T. Ram
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
740 Õ Vol. 67, DECEMBER 2000 Copyright ©
rder
to
in
the
nd

ked
ith
er, a
al
ion

ntial
been
l
on-
of
a-

men
r-

o
re,
es

ve

on-
ese
the

ter-

e
in

in-

ced
tire

concrete cross section~Fig. 1~c!!. At this point, nearly all the bond
capacity provided so far by the concrete hoop stresses is
hausted. In order to achieve greater strength, transverse reinf
ment or externally applied transverse stress is required for c
finement~@2–4#!.

Tepfers in 1979 developed one of the first models for study
longitudinal cracking of concrete with an embedded rebar. T
radial component of the bond stress was regarded as hydros
pressure acting against a thick wall cylinder. The splitting of t
cylinder was evaluated based on the lower bound and the u
bound limits of the strength criteria. In the former, the criterion
satisfied when the tangential stress of the cylinder inside sur
reaches the material tensile strength, and in the later it is satis
when the tensile strength across the entire thickness of the c
der is exhausted. A partly cracked model was also formulated
it did not account for the traction across the longitudinal crac
Other studies by Tepfers@5# considered an externally confine
concrete specimen with rebar in pullout. The normal compone
of traction at the rebar-concrete interface was evaluated by m
suring the strain in the confining steel ring.

Prediction of the load capacity of a concrete cylinder subjec
internal pressure using the cohesive crack formulation has b
gaining popularity recently~@6–9#!. The concrete cylinder is con
sidered as an intact elastic outer ring and a cracked cohesive~soft-
ening! inner ring, subject to hydrostatic pressure acting on
circumference of the inner surface. An integral equation of eq
librium is solved, by expressing the crack opening in terms of
tangential stress (s t) according to the material post peak respon
in tension. In order to describe the tangential strain variation in
radial direction, certain assumptions are made regarding the
gential displacement variation in the cracked zone.

Den Uijl and Bigaj@10# incorporated the radial displacemen
of concrete in a fracture mechanics model similar to that descri
above. The relative magnitude of the displacement compon
~dn anddt! at the interface are shown to depend on the mode
failure. A linear relation betweendt and dn is suggested for the
splitting type failure. On the other hand when the anchorage f
ure is by shear/pullout,dt is shown to increase at a much fast
rate after reaching the peak load vicinity.

In this study, an experimental program is carried out to evalu
the stages of splitting of concrete in the absence of confin
effects other than the concrete cover. Keeping the rebar size
stant, the influence of cross section size and geometry on
splitting of concrete is examined. An interferometer is devised
accurate detection of cracking of concrete during rebar pullou
is commonly believed that longitudinal cracks initiate regardle
of specimen size, and that the extent of propagation of th
cracks depends on the concrete cover. Based on the interfero
ric images, it is shown that longitudinal cracks are not initiated
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the mode of failure is changed from splitting to pullout. It must
added that there is always a possibility that longitudinal cra
may have initiated on the back surface of the specimen. I
further shown that this apparent size-dependent failure mode
dency also depends on changes in the specimen geometr
study of the bond in reinforced concrete is carried out with p
ticular attention to the influence of the cross section size and
ometry. The influence of these parameters on cracking of conc
and, in particular, on the relationship between the normal
tangential stress components is identified.

2 Experimental Program
The experimental program is designed to observe the proce

splitting that occurs in pullout test specimens. The cracking
concrete is monitored while measuring and evaluating the st
of stress and displacement at the bar-concrete interface. The q
tity of interest that cannot directly be measured is the norm
component of traction at the interface. A hybrid numeric
experimental procedure is adopted where the measured crack
file, a material model and a fracture criterion are used to estim
the normal stress.

Since concrete splitting by rebar pullout is caused by the we
ing action of the rebar lugs, specially configured wedge specim
are also tested to validate the procedure by which the rebar s

Fig. 1 Bond stress and longitudinal splitting of concrete
Journal of Applied Mechanics
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ting force is obtained. This validation is possible as the norm
component of the wedge force is independently available for
configuration.

Finally, the proposed model is validated by evaluating its eff
tiveness in simulating the shear strength reported from tests
specimens of other geometries conducted at McGill Univers
and The University of Texas.

2.1 Speckle Interferometer. In concrete, crack-opening
displacements near peak load are typically less than 50 mic
~@11#!. Speckle pattern interferometry~@12#! is a powerful tech-
nique for detection and measurement of such small displacem
This technique is powerful because the measurement gaug
sensitivity is on the order of a fraction of wavelength (l
5633 nm) of the monochromatic light commonly used. In ord
to obtain an accurate measurement of the crack length and
accurate assessment of the cohesive stress bridging the cr
displacement measurements of high resolution are required. P
measurement speckle interferometry~@13#!, is used for accurate
evaluation of crack lengths and crack-opening displaceme
~@12#!. The experimental setup is shown in Fig. 2. The specime
installed such that the crack propagates vertically, and so the
terferometer is configured to measure the surface displacemen
the horizontal direction to obtain the crack-opening displacem
Light from a He-Ne laser is passed through a beam splitter. O
leg contains a mirror attached to a piezoelectric transducer u
for phase stepping. Prior to illuminating the object, each beam
expanded by passing through an objective lens and a spatial fi
The two wavefronts are scattered from the rough specimen
face and the scattered beams are recombined at the CCD arr
a camera. The observed random/speckled intensity variatio
due to the interference of the scattered wavefronts with rand
phase. Phase-stepped speckle intensity patterns of the specim
its reference state are first recorded and then subtracted from
phase-stepped intensity pattern of the object in its deformed st
The resulting intensity fringe patterns associated with the sp
men surface displacement are

I i5I 01$11g0 cos@f~x,y!1a i #% i 51,2,3 (1)

for the three phase steps~Fig. 2!.
from which the phase can be extracted:

f~x,y!5tan21$@A3~ I 32I 2!#/@2I 12I 22I 3#%. (2)

The displacementd mapped by each phase fringe is

d5l/2 sinu (3)
Fig. 2 Loading apparatus and the interferometric setup
DECEMBER 2000, Vol. 67 Õ 741
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where l50.633mm ~He-Ne wavelength! u545 deg ~angle be-
tween the illuminating beams and the specimen normal!.

2.2 Rebar Specimens. Normal strength concrete with wa
ter, cement, fine and coarse aggregate content proportions, re
tively, of 0.5, 1, 2, and 2 parts by weight was used for all t
specimens. The maximum aggregate size was 8 mm. The sp
mens were cured in 90 percent relative humidity for 28 days
compressive strength of 33 MPa and a modulus of elasticity
25,000 MPa were obtained as measured with 76 mm3 152 mm
cylindrical test specimens. A tensile strength of 2.5 MPa was
tained using 1003 30 3 20 mm prism specimens.

The pullout specimen dimensions are shown in Table 1 and
3. Two different specimen geometries were used keeping the s
rebar size. In the first geometry~edge specimens!, the rebar was
cast near the specimen edge with a notch cut on the top so tha
splitting crack propagates as an edge crack in one direction o
In the second geometry~center specimens!, the rebar was cast in
the center of the specimen. The aspect ratio~width/height! of all
specimens was 1.5. The specimen dimensions were 503 75
~small!, 1003 150 ~medium!, and 1503 225 ~large! millimeters.
All specimens were 50 mm thick, and the rebar diameter wa
mm with ribs at 90 deg with respect to the longitudinal axis.
order to induce pressure in the horizontal direction for obtainin
reliable measure of the normal stress, the rebar was partly m
along the top and bottom surfaces of the longitudinal lugs.

Fig. 3 Pullout splitting tests

Table 1 Specimen Details

rebar diam. (db)59 mm, compressive strength (f 8c)533 MPa

Specimen

Dimensions
~Height3Width!

~mm!

Edge rebar, small 50375
Edge rebar, medium 1003150
Edge rebar, large 1503225
Center rebar, small 50375
Center rebar, medium 1003150
Center rebar, Large 1503225
Edge wedge, small 50375
Edge wedge, medium 1003150
Edge wedge, large 1503225
742 Õ Vol. 67, DECEMBER 2000
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Load was applied by a 200-kN center bore Enerpac hydra
actuator~Fig. 2!. The threaded end of the rebar was attached t
steel bar passing through the actuator. The pullout load was m
sured with a 25-kN Sensotec load cell. The slip was measu
using an LVDT at the free end of the rebar. Teflon pads w
placed at the specimen bearing reactions in order to limit
effect of reaction friction against splitting.

2.3 Wedge Specimens. Wedge specimens were tested in o
der to validate the procedure by which the normal stress for
rebar specimens is evaluated. The relation between the force c
ponents acting on the wedge is shown in Fig. 3. The dimens
of the wedge specimens are the same as the edge rebar speci
Wedge splitting tests with this configuration were chosen in or
to simulate the bearing boundary condition of the rebar pull
test. Two layers of thin Teflon pads were placed between e
wedge-concrete interface establishing a reliable/known coeffic
of friction. The coefficient of frictionm of Teflon against Teflon is
4.5 percent, smaller than the coefficient of friction of Teflo
against concrete or steel. Teflon pads were also placed at
specimen bearing reactions in order to limit the effect of bear
friction against splitting.

3 Numerical Simulation

3.1 Edge Rebar Specimens. Figures 4 and 5 show typica
wrapped phase maps representing the surface displacement o
edge and center rebar specimens. Since only the crack-ope
displacement and crack lengths are of primary interest, autom
two-dimensional unwrapping procedures~@13#! to obtain a dis-
placement map were deemed unnecessary. Rather, by monit
the extent of fringe discontinuities~reflecting displacement dis
continuities across the crack! the crack length was directly mea
sured. Manual unwrapping of the phase images along either
of the crack was performed, and the results were used to ob
the crack-opening displacement profiles.

Crack propagation was observed to be stable in the edge s
mens all of which failed by splitting of the concrete. A typic
crack profile for an edge rebar specimen is shown in Fig. 6. T
crack-opening displacement was translated to a correspon
crack flank traction~Fig. 7! through an exponential function rela
ing stress to crack opening~@11#! ~Appendix A!. The measured
crack length at each load step was incorporated into the fi
element mesh~@14#!, and the crack flank traction was used as lo
input to the program. The stress intensity factorKl was evaluated
using singular crack-tip elements. The crack propagation crite
used in the numerical simulations is that of the stress inten
factor reaching the critical stress intensity factor (Kl c), whereKl c
is based on an effective elastic model~two-parameter model by
@15#! ~Appendix B!. The normal stress~splitting force! at the rebar
required to satisfy this fracture criterion was then calculated. T
crack was incrementally propagated to the next experiment
measured length, and the procedure was repeated. The num
simulation was performed in two dimensions, assuming pla
strain conditions.

3.2 Center Rebar Specimens. Unlike the edge rebar speci
mens, the mode of failure of the center rebar specimens was
dependent. The small and medium center specimens fa
abruptly by splitting of concrete upon developing small longit
dinal cracks. However, the large center specimen failed by pul
of rebar with no longitudinal cracks of any extent observable. T
interface normal stresss at peak for the small and medium cent
specimens were evaluated in the same way as that outlined a
for the edge specimens. The normal stresss in the elastic range
was evaluated for both the center and the edge specimen
numerical simulation of the dilatation at the interface and cor
lating the results with the experimentally measured dilatation.

Since stable crack propagation was not achieved, no optic
measured crack-opening profile or crack length data were av
Transactions of the ASME
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Fig. 4 Crack propagation in the edge rebar specimen „dÄ150 mm …

Fig. 5 Crack propagation in the center rebar specimen „dÄ50 mm …
Fig. 6 Measured crack profile
chanics
Fig. 7 Calculated crack flank traction used as input for nu-
merical simulation
DECEMBER 2000, Vol. 67 Õ 743
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able in this case. Numerical evaluation of the splitting force
the center rebar specimens was therefore performed using a
erative scheme. The scheme is as follows:

1 Start with some small initial guess for the crack length.
2 Guess an initial crack-tip opening displacement~CTOD!.
3 Assume linear crack profile.
4 Apply crack flank tractionT based on the material mode

discussed in Section 3.1.
5 Apply and increase the splitting force such that the crack

stress intensity factorKl 5Kl c .
6 Check the corresponding numerical crack profile~COD!.

If the output crack profile~COD! and the inputT satisfy the
material model to within a stipulated accuracy, then cons
tency is achieved.
Grow the crack to a new length and repeat Steps 2 to 6.
Else guess a new CTOD and repeat Steps 3 to 6 using
new crack profile as given by the current iteration.

That this iterative algorithm leads to consistent results was es
lished by adopting the same scheme for other specimens~where
experimental data were available for comparison! as discussed in
Section 4.2.

4 Results and Discussions

4.1 Rebar Specimens. Figure 8 shows the relation betwee
the pullout forceP and the normal displacementdn. In general,
increase in the size of the specimens which failed by splitting,
to an increase in the pullout strength. This is due to enhancem
in the confinement. In the case of the edge specimens, this e
was pronounced. In the case of the center specimens it was
pronounced. As a matter fact, when the size of the center sp
men is increased from medium to large, the pullout strength
observed to decrease as the failure mode changed from splittin
pullout. These trends are based on performing tests on three s
mens of each type.

Figure 9 shows the relation between the two components
relative displacements at the rebar-concrete interface. The p
of crack initiation~as detected on the specimen surface! and the
peak load are marked with a cross and a star, respectively. Cr
initiate at approximately 6 to 10 microns of relative normal d
placement (dn), but at larger relative shear displacement~dt! with
increasing confinement. The increase in confinement is assoc

Fig. 8 Rebar pullout force versus concrete expansion at the
rebar
744 Õ Vol. 67, DECEMBER 2000
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Fig. 9 Components of rebar-concrete relative displacement

Fig. 10 Stress Intensity factor „Kl … for rebar specimens

Fig. 11 Numerical simulation of 9-mm rebar pullout
Transactions of the ASME
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either with increasing the specimen size or with changing
specimen geometry from edge to center. In the case of small
medium center rebar specimens, the point of crack initiation
peak pullout loads coincide.

Figure 10 shows the influence of specimen dimensions~size,
and location of rebar! on the stress intensity factor~Kl! as ob-
tained from a linear fracture mechanics analysis.Kl is shown as a
function of the nondimensional crack length (a/d) with constant
applied splitting forceFs. Comparing the relative values ofKl in
the figure, it can be expected that the edge specimens would
hibit a larger splitting tendency than the center rebar specim
The same tendency is expected as the specimen size is decre

The evaluated splitting force~s 3 projected area! for both edge
and the center geometries are shown in Fig. 11. The influenc
increasing size on pullout load~Fig. 8! is consistent with trends
observed on the increase of splitting force~Fig. 11! and decrease
of stress intensity factor~Fig. 10!.

4.2 Wedge Specimens and Validation of the Hybrid
Method. Wedge-splitting tests were carried out primarily
Journal of Applied Mechanics
the
and
nd

ex-
ns.
ased.

e of

o

validate the selected fracture criterion. Figure 12 shows the s
ting force versus the crack-tip opening displacement~CTOD!, and
phase maps for a typical wedge specimen. The splitting force
the small, medium, and large wedge specimens are also comp
The results show that, as expected, the peak load and the c
sponding CTOD increase with increasing specimen size.

Figures 13 and 14 show the crack profiles~COD!, and crack
flank traction at various load steps during crack propagation of
large wedge specimen. The prediction of the splitting force for
wedge specimens is performed in the same way as for the r
specimens. Figure 15 shows the comparison of the simulated
the measured splitting force. It is shown that after accurate m
surement of the crack profiles, the numerically predicted we
splitting force at peak agrees with the experimental results w
the fracture criterionKl 5Kl c is used. The alternative fractur
criterion Kl 50 and the tensile strength criterion were also co
sidered. However, those simulations predicted forces much lo
than that measured experimentally. The overprediction of the
peak response observed in the figure is attributed to the effec
Fig. 12 Splitting by wedge pullout
DECEMBER 2000, Vol. 67 Õ 745
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the distributed microcracking at the crack tip which is not a
counted for in the analysis. It is also partly attributed to possi
deviations of the crack front profile~assumed straight in a plane
strain analysis! through the specimen thickness. These issues
quire further study.

4.3 Confinement Parametera. The measured shear stre
and the evaluated normal stress for the rebar specimens are
here to establish a confinement parametera5arctans/t which is
shown in Fig. 16. In the case of the edge rebar specimens, the
trace ofa is shown as a function of slipdt. In the case of the
center rebar specimens,a is only shown at peak, as stable fractu
was not achieved. It is observed thata at peak load is about 60
deg for the center rebar specimens, and is approximately 40
for the edge rebar specimens.

From the above, it appears thata is geometry dependent, bu
essentially size independent. The later is based only on obse
tions of edge and center rebar specimens. It is proposed tha
variation of a with specimen geometry be functionally param
etrized using concrete cover ratioc1/c2 ~Fig. 16!. Furthermore, it
is proposed that the stress intensity factor~Kl! be used as a pa
rameter for determininga at other cover ratios~that is when the
rebar is located in between the edge and the center geomet!.
The rationale for this is drawn based on the effectiveness of
stress intensity factor~Fig. 10! in following the trends of splitting
strength~Fig. 11!. Numerical evaluation of the stress intensi
factor for specimens of different geometry~based on rebar loca
tion! is performed and the stress intensity factor calculated.
form of stress intensity variation as a function of the rebar lo
tion is then adopted for scaling the confinement parametera. The
proposeda shown in Fig. 16 demonstrates that the influence

Fig. 13 Measured crack profile

Fig. 14 Calculated crack flank traction used as input for nu-
merical simulation
746 Õ Vol. 67, DECEMBER 2000
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increasing the top cover ona is substantial when the ratio of to
to bottom cover (c1/c2) is small. With increasingc1/c2 ~as the
rebar approaches the center of the specimen! this influence is
shown to diminish.

4.4 Model Validation. The proposed confinement param
etera is used to predict/simulate tests performed at McGill U
versity and the University of Texas on other specimen geometr
When testing a pullout specimen a nonuniform bond stress di
bution is expected along the rebar. A uniform distribution can
assumed for a short specimen~specimen lengthL,5 bar diameter
db , such as that used in this work!. A unique procedure was
developed at McGill in order to generate uniform bond stre
along a relatively long rebar embedded in concrete (L515db)
Abrishami@16#. The influence of specimen size and rebar size w
investigated. It was reported that increasing the specimen
resulted in an increase in the pullout strength, and increasing
rebar diameter resulted in a decrease in the pullout strength.
iterative numerical procedure outlined in Section 3.2 along wit
confinement parameter ofa560 deg valid for center geometry ar
used to obtain an estimate for the peak bond stress measur
McGill. An approximate fracture toughness corresponding to
reported concrete strength (f 8c525 Mpa) is chosen for the analy
sis. It was reported by the McGill researchers that the specim
failed with formation of a splitting crack passing through the r
bar. That crack pattern is simulated accordingly. Specimen dim
sions and the results of the numerical simulation are shown
Table 2 indicating reasonably good agreement with the exp
mental results.

The influence of the position of the rebar on bond strength w
investigated at the University of Texas~@17#!. A special loading

Fig. 15 Numerical simulation of the wedge splitting test
Transactions of the ASME
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Fig. 16 Effect of specimen size and geometry on the confinement parameter
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configuration was used in order to generate uniform bond stres
indicated by strain gauge instrumented rebars. The specimen
hibited longitudinal cracks appearing on the concrete surface
creasing the ratio of top to bottom concrete cover was found
increase the pullout strength. Specimen dimensions and the re
of the numerical simulation for these tests are also shown in T
2. Two different concrete cover ratiosc1/c2 ~0.1 and 0.45! were
simulated using the proposed confinement parameter and th
erative procedure in Section 3.2. Once again reasonably g
agreement is obtained with the experimental results lending c
fidence to the validity of the proposed formulation. Experimen
scatter of tests performed at McGill and University of Texas
not available for assessing the quality of the predicted results

5 Conclusions
Nonlinear fracture mechanics is used to model the bo

splitting failure in reinforced concrete. Singular cohesive cra
modeling is shown to provide good prediction of the experimen
results.

Edge rebar specimens were observed to fail by splitting.
creasing the specimen size has a pronounced effect on incre
the pullout load.

Small and medium center rebar specimens failed by splitt
but increasing the specimen size had a less pronounced effe

Table 2 Prediction of tests by McGill University and University
of Texas
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increasing the pullout load. Stable post-peak response was
obtained for the splitting center rebar specimens. Closed loop
ing of this experiment, is planned for the future.

A large center rebar specimen was observed to fail by pull
without development of longitudinal cracks of any measura
extent.

A confinement parametera5arctan(s/t) is found to be speci-
men geometry dependent but essentially size independent.a is
experimentally determined to be 60 deg for the center specim
and 40 deg for the edge specimen.

Finally, it must be stated that the present model is valid for st
to concrete material interface with standard rebar proportions.
example, the application of epoxy coating to the rebar for
purpose of corrosion protection or alteration of the lug geome
will change the confinement parametera.
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Appendix A

A Constitutive Model for Crack Flank Traction in Con-
crete. Concrete is a quasi-brittle material with substantial p
peak nonlinearity~@18#!. For example, the stress-elongation of
concrete prism subject to tension may be divided into four stag
In the first stage~up to 30 percent of peak load!, the propagation
of the internal voids is negligible. In the second stage~up to 80
percent of peak!, internal voids propagate into isolated cracks ra
domly distributed through out the specimen volume. In this sta
the distribution of internal strain is relatively uniform over th
specimen length. Strain localization occurs in the third stage~up
to peak load!, followed by formation of a major crack in the
fourth stage. A post-peak descending stage was estimated by
palaratnam@11#, with a stress versus crack opening displacem
relation shown in Fig. 6.
DECEMBER 2000, Vol. 67 Õ 747
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Appendix B

A Fracture Mechanic Model for Concrete. Fracture of con-
crete is accompanied with a considerable crack flank trac
and/or inelastic process zone. For that reason linear elastic
ture mechanics~LEFM! cannot be directly applied. An effectiv
elastic crack governed by LEFM can, however, be introduc
The equivalence between the actual and the effective crack ca
prescribed in the model such that the effective crack exhibits
same unloading compliance as the actual structure. Since s
crack propagation before peak load is present in concrete,
critical effective crack length is different form the initial. In orde
to predict the failure condition, at least two conditions must ex
to determine the critical load and the corresponding crack len
Most effect crack models use two or more fracture parameter
define the fracture process. Jenq and Shah proposed the follo
criteria for an unstable crack:

Kl 5Ki c

CTOD5CTODC

WhereKl and CTOD are the stress intensity factor and the cra
tip opening displacement. These can calculated based on LE
Kl c and CTODC are evaluated experimentally~@15#!.
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Reactive Flow in a Porous
Medium: Formulation for
Spatially Periodic Hexagonally
Packed Cylinders
This study develops an integrated micro-macro model of reactive flow in a porous
dium consisting of spatially periodic hexagonal array of solid reacting cylinders.
micro model describes the growth of reaction product on the solid reactant surface
macro flow of the infiltrant fluid is described by Darcy’s law. The transient permeab
and thus advancement of the infiltration front are determined as a function of pro
parameters from the micro model. Crucial process parameters that influence the ad
of the fluid front are identified. The results from this investigation can be used to opti
the manufacture of ceramic-matrix composites.@S0021-8936~00!02703-3#
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1 Introduction
This study deals with the modeling aspect of reactive melt

filtration and estimates permeability as a function of time fo
preform geometry of hexagonally packed array of cylindric
~specifically, carbon-coated silicon carbide! fibers. The overall ob-
jective of this research is to determine permeability, a macro fl
parameter, in terms of manufacturing process parameters su
heat of reaction, initial temperature of fibers, etc., which fina
would give information on the infiltration front. By achieving th
objective, we will be able to optimize the parameters to maxim
manufacturing efficiency as well as assure fully dense, hi
quality ceramic composite products that is a main requiremen
the industry.

The modeling of the complete process has been structured
two stages, namely, micro and macro modeling. At the mi
level, a cylindrical geometry is considered for the fiber reinforc
ments and solutions to the problem of coupled heat and m
transfer with chemical reaction and volume expansion are der
and solved numerically. The porosity of a representative volu
element~RVE! is calculated as a function of time from the grow
of the SiC layer on the carbon-coated reinforcement. At the ma
level, the permeability of the preform is then estimated as a fu
tion of the porosity in model. After determining the transient p
meability, the position of the infiltration front at each instant
time is obtained by a simple integration procedure. The follow
section provides a literature review on reactive infiltration.

2 Background on Reactive Infiltration

2.1 Process Models. The method of reactive melt infiltra
tion has been studied by Hillig and co-workers~@1–4#! for the
purpose of fabricating silicon/silicon carbide composites for h
temperature applications. Experiments have primarily been
rected towards the silicon/carbon system due to the wide rang
applicability of SiC/SiC composites. Ness and Page@5# exten-
sively studied the evolution of the microstructure ofa-SiC and
b-SiC during the manufacture of reaction bonded SiC. The w

1To whom correspondence should be addressed.
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of Popper@6#, Forrest et al.@7#, and Ness and Page@5# laid the
foundations for the detailed study of the infiltration of molten
in carbon-coated SiC fiber preforms. With regard to the mac
scopic flow studies during infiltration for the manufacture of co
posites, a detailed review has been given by A˚ ström et al.@8#.

Process models to help better understand infiltration are ma
based on the macroscopic flow of fluids through porous media~in
our case, porous preforms!. Darcy’s law describes the flow of a
fluid through a porous medium and is given by

q52
K

m

DP

L
(1)

where ‘‘q’’ is the macroscopic velocity of the fluid in the medium
‘‘ K’’ is defined as the permeability of the medium,m is the coef-
ficient of viscosity, andDP/L is the pressure gradient establish
over the lengthL. The permeability depends on the geometry
the medium.

Models developed to help understand the infiltration proc
focus mainly on the macro flow of the reactive melt. Edwards a
Olson @9# and Martins et al.@10# presented a macro model base
on the flow of the reactive melt using Darcy’s law for flo
through a porous medium for the manufacture of metal-ma
composites. Fitzer and Gadow@11,12# modeled the growth of the
reaction product during infiltration using a micro model.There is
still a need to unite the macro and micro model developments
a complete description of infiltration. One way of uniting micro
and macro phenomena is to use statistical theories to des
infiltration ~@13–16#!.

2.2 Permeability of Spatially Periodic Structures: Macro
Modeling. Chiang et al.@17# and Messner and Chiang@18# de-
veloped a macro model for the transient permeability of a por
preform using the Hagen-Poiseuille law for flow through a bun
of capillaries based on the model of Brittin@19#. In 1946 Brittin
@19# developed a model for the infiltration process in an isotro
porous medium. The same assumption has been made in re
publications~@9,10#! dealing with the development of models fo
the infiltration kinetics in metal-matrix composites. The anis
ropy of the porous preform has been considered by several in
tigators~@20–23#! using a permeability tensor in Darcy’s law fo
porous media. To account for the temporal change of permeab
in the preform, Messner and Chiang@24# proposed a one-
dimensional model relating the permeability to the pore ‘‘radiu
in a system of capillaries. Other models to predict permeabi
were proposed by Gebart@20#, Cai @21,22#, and Chan et al.@23#.
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Perhaps the earliest attempt to express the permeability of a
rous preform comprised of a bed of spherical particles in term
its geometrical properties was made by Kozeny, as stated in
@8#. Another approach adopted by Watson@25# for studies of
flows in soils made use of the Navier-Stokes equations in
dimensions to describe the flow in a ‘‘representative volume e
ment’’ ~RVE!. This study considered an RVE made of squa
blocks which was a crude representation of the actual geometr
recent article on yet another attempt to obtain the permeabilit
a unidirectional fiber bed was given by Westhuizen and Du Pl
@26#.

2.3 Micro Modeling. Micro modeling in this study involves
the investigation of the heterogeneous chemical reaction of
infiltrant fluid with a single cylindrical fiber~i.e., a solid reacting
cylinder!. In the literature on heterogeneous chemical reacti
~@27–34#! ~there are extensive treatises on heterogeneous r
tions; only the references pertinent to our topic have been c
here!, we can find extensive studies of gas-solid reactions w
solid reaction products~@13–16#!. Levenspiel@28# gives descrip-
tions of heterogeneous reactions of solids when they react
fluids. These equations are also applicable to solid-liquid re
tions. A model called the unreacted-core shrinking~URCS! model
used by Yagi and Kunii@32# and also referred to and modified b
Ausman and Watson@33# has been applied to solid-fluid reaction
where the reaction is primarily diffusion controlled and a ‘‘sharp
interface is clearly visible between the solid reactant and the s
reaction product formed. The studies of Wen and Wang@34# for
solid-gas reactions led to a modified definition of the effectiven
factor for nonisothermal URCS models for spheres and hel
gain deeper insight into the thermal and geometric instabilitie
a solid reacting particle during reaction.

2.4 Integration of Micro and Macro Models. One of the
common approaches to solve problems occurring at a macro s
has been the continuum approach~@35,36#!. Statistical theories
have played a major role in including effects of chemical reacti
in pores during infiltration of a porous preform by a gas~@17–
20#!. The porous preform is considered a ‘‘pore network’’~@19#!
similar to a crystal lattice network. This network model was us
by Rege and Fogler@37# for carbonate cores infiltrated by acid
FeCl3 solutions. This is essentially the idea of a spatially perio
medium where the geometry of the preform is invariant unde
translation of magnitude equal to the unit cell dimension.

Statistical theories can be avoided for increasing the scale o
RVE to a macro scale since we are dealing with a spatially p
odic geometry by following an approach called the method
multiple scales~@36#!. The complete mathematical framework fo
the method of multiple scales approach is still in its developm
tal stages. The most well-known approach, however, is a ‘‘ph
cal approach’’ ~@36#! where macroscopic ‘‘conductivities’’ are
found for a desired spatially periodic geometry. The ‘‘conduct
ity’’ may be an effective diffusivity, a permeability or a therma
conductivity.

3 Technical Approach

3.1 Micro Modeling. The following section first outlines
the standard development of the unreacted-core shrinking~URCS!
model as given by Levenspiel@28# and then extends the URC
model to include volume expansion of the solid reaction produ

Standard Unreacted-Core Shrinking Model.Let us consider a
single spherical pellet of solid reactant material ‘‘B’’ which comes
in contact and reacts with the fluid reactant ‘‘A.’’ The solid reac-
tion product ‘‘C’’ thus formed on the spherical pellet grows on th
remaining unreacted core which shrinks with more and more
action. The chemical reaction can be written as

aA1bB⇒cC (1a)
750 Õ Vol. 67, DECEMBER 2000
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wherea, b, andc are stoichiometric coefficients forA, B, andC,
respectively. The final expression in terms of the moving bou
ary of the unreacted corer c and the outer radiusRo of the pellet
~which does not change with time! is given by Levenspiel@28# as
follows:

2rBF E
r c5Ro

r c5r cS 1

r c
2

1

Ro
D r c

2drcG5bDeACAgE
t50

t5t

dt (2)

whererB is the density ofB, DeA is the effective diffusivity ofA
within the core,CAg is the concentration of reactantA, b is the
stoichiometric coefficient ofB, and t is time. An assumption in-
herent in the above development is that there is no shrinkage
net volume expansion due to reactions. Thus we have to accoun
for volume expansion in the URCS model. A modification of t
URCS model is outlined next.

Modified Unreacted-Core Shrinking Model for Volume Expa
sion. Let us assume we have identical conditions prevailing a
the ash-diffusion-controlled URCS model~presented by Leven-
spiel @28#! with the additional knowledge that now the outer mo
ing radius with more reaction is not a constant, but is increas
with more volume expansion. Then, ifR is the outer radius of a
sphere andr c the radius at the reaction front, we writeR
5R(r c), i.e., the outer radiusR depends on some fundament
manner onr c ~@38–43#!. From the initial reaction equation

Af1Bs→Ds (3)

~where the subscripts ‘‘f ’’ and ‘‘ s’’ are fluid and solid, respec-
tively!, we have the rates of reaction ofA, B, andD, respectively,
related as follows:

2rateA52rateB5rateD . (4)

Then

2
dNB

dt
5

dND

dt
(5)

whereNB and ND are the number of moles ofB and D, respec-
tively. From the above equation, after substituting for the num
of moles as the molar density times the volume, then integra
and simplifying we get

S R

Ro
D 3

5a1~12a!S r B

Ro
D 3

(6)

wherea is the ratio of the molar density of the solid reactantB to
the molar density of the reaction productD, r B is the radius of
unreacted core ofB ~i.e., radius of the moving boundary5r c in
Eq. ~2!!, R is the outer moving or variable radius of the pellet, a
Ro is the initial outer radius. Setting the ratios to nondimensio
radii, we have

jout
3 5a1~12a!j in

3 (7)

wherejout andj in are (R/Ro) and (r B /Ro), respectively. Follow-
ing an identical procedure for cylindrical pellets~and considering
only the radial growth of the reaction product!, we would get

jout
2 5a1~12a!j in

2 . (8)

Equations~7! and ~8! for spherical and cylindrical geometrie
have to be solved simultaneously with Eq.~2! for j in . Thus, math-
ematically, the main modification to the URCS model is that t
integration in Eq.~2! cannot be carried out assumingRo a con-
stant with respect tor c now.

Nonisothermal Unreacted-Core Shrinking Models.For exo-
thermic or endothermic reactions, we have to consider the eff
due to steep temperature gradients within the solid particles
ing reaction and diffusion. This would be an extension of t
URCS models with and without volume expansion of the react
product along with solutions of the heat conduction equati
Transactions of the ASME
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These equations now offer no closed-form solution due to
coupling of heat and mass transfer~from the Arrhenius form of
the chemical reaction rate! and have to be solved numerically
Figure 1 shows the general concentration and temperature pro
that are obtained from the nonisothermal URCS models. The
lowing developments are based on Wen and Wang’s@34# noniso-
thermal URCS models which they developed for spheres with
volume expansion.

Nonisothermal Solutions for Cylinders Including Volume E
pansion. Let us denoteCA to be the concentration ofA andr the
radius of the cylinder. We start from the basic pseudo-steady-s
equation for the mole fraction of the fluid reactant~similar to Wen
and Wang@34# which was developed for spheres! given by

]2CA

]r 2 1
1

r

]CA

]r
50 ; r c,r ,R~r c! (9)

with the boundary conditions

@r 5R DeA

]CA

]r U
r 5R

T5To

5kmA~CAo2CAs! (10)

@r 5r c DeA

]CA

]r U r 5r c
T5Tc

5aksCsoCAc (11)

@r 5r c 2DeAuTo

]CA

]r U
r 5r c

5aCso

drc

dt
(12)

and the initial condition

@t50 R5Ro and r 5Ro . (13)

In the above equations,DeA is the effective diffusivity ofA, the
subscript ‘‘o’’ stands for the bulk fluid infiltrant, subscript ‘‘s’’ is
at the outer surface of the cylindrical particle, ‘‘i’’ is the initial
value att50, kmA the mass transfer coefficient ofA across the
fluid film around the unreacted-core, andks the rate constant for
the reaction betweenA andB as shown in Eq.~3!. It is important
to note here that

R5R~r c!. (14)

The energy balance is given by

Fig. 1 General schematic of concentration and temperature
profiles in nonisothermal unreacted-core shrinking models af-
ter Wen and Wang †34‡
Journal of Applied Mechanics
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]2T

]r 2 1
1

r

]T

]r
5

Cpe

ke

]T

]t
; r c,r ,R (15)

with the following boundary condition for accumulation:

@r 5R 2ke

]T

]r U
r 5R

5hc~Ts2To!. (16)

whereCpe is the volumetric heat capacity of the reaction produ
layer,ke is the effective thermal conductivity of the reaction pro
uct layer, andhc the heat transfer coefficient. The accumulati
term now is given by

@r 5r c

~2pr c!aks~Tc!CsoCAc~2DH !12pr cke

]T

]r U
r 5r c

5pr c
2rccpc

dTc

dt

(17)

with the initial condition for temperature being

@t50 T5Ti5Tc (18)

whereDH is the heat of reaction, ‘‘a’’ is the stoichiometric coef-
ficient of ‘‘A,’’ cpc is the heat capacity of the unreacted core, a
r c is the density of unreacted core. Obtaining the nondimensio
form of the equations, the mole balance reduces to

d2v

dj2 1
1

j

dv

dj
50 ; jc,j,jo (19)

wherev i is the mole fraction of thei th reactant,j being r /Ro ,
with the boundary conditions changing at the outer surface of
cylinder due to volume expansion, given by

@j5jo

dv

dj U
j5jo

5NSh~12vs! (20)

wherejo denotes the outer moving radius,NSh the modified Sher-
wood number which is given bykmA(To)Ro /DeA(To) , and

@j5jc

dv

dj U
j5jc

5fs

vc

Uc
expF E

RTo
S 12

1

Uc
D G (21)

@j5jc

dv

dj U
j5jc

52fs

djc

du
(22)

@j5jc v5vc (23)

with the initial condition for the reaction front and the outer mo
ing front given by

@u50 jc5jo51 (24)

where fs is the modified Thiele modulus given by
ks(To)CSoR/DeA(To) , u a nondimensional time5ks(To)CAot/Ro ,
Ui the nondimensional temperature5Ti /To , R the universal gas
constant, andE the activation energy of reaction.

The nondimensionalization factor is selected same as be
~given below!:

Nondimensionalizing factor5aks~To!CAoCso~2DH !jc

(25)

The effectiveness factor is defined as

hs5
2pr caks~Tc!CsoCAc

2pr caks~To!CsoCAo
5

ks~Tc!CAc

ks~To!CAo

5
vc

Uc
expF E

RTo
S 12

1

Uc
D G52

djc

du
(26)

The derivation of the five equations for this model for cylinders
detailed in Refs.@38–40#.
DECEMBER 2000, Vol. 67 Õ 751
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Summarizing the equations to be solved, we have

vc5vs1NSh~12vs!jo lnS jc

jo
D (27)

NSh~12vs!jo

fsjc
5

vc

Uc
expF E

RTo
S 12

1

Uc
D G5hs (28)

NSh~12vs!jo

fsjc
52

djc

du
5hs (29)

Us5Uc1jo lnS jc

jo
DNNu~c!~Us21! (30)

and

H Gjc

2
2Sjc

21Sjo
21

SQ

12W
2SQJ dUc

du

5
vc

Uc
expF E

RTo
S 12

1

Uc
D G2

NNu~c!~Us21!

bfsS E

RTo
D

jo

jc

1SUchs~2joRr c
!2S SQ

12WDV~Us21!2SP~Us2Uc!

2
A

bS E

RTo
D S joRr c

Ushs

jc
D (31)

where

S5
A

2bS E

RTo
D jc

(32)

Q5jo
21

jo
22jc

2

2 lnS jc

jo
D (33)

P5
dQ

du
52hsF2joRr c

1
jcjo ln~jc /jo!~2joRr c

22jc!2~jo
22jc

2!~jo2jcRr c
!

2jcjo@ ln~jc /jo!#2 G
(34)

W5jo lnS jc

jo
DNNu~c! (35)

V5
dW

du
52hsNNu~c!F jo2jcRr c

jc
1Rr c

lnS jc

jo
D G . (36)

In the above equations,NNu(c)5hcRo /ke , the modified Nusselt
number for convective heat transfer. For a cylinder, we have, fr
Eq. ~8!, that the outer moving radius given by

jo
25a1~12a!jc

2. (37)

Equation ~37! has to be solved in combination with Eqs.~27!
through~31! for solutions of nonisothermal URCS processes
cylindrical fibers. The solutions were obtained using a simple
ler finite difference scheme to solve for the six essential unkno
~vc , vs , Uc , Us , jc , and jo! with the help of aC program
written for this purpose.

3.2 Macro Modeling: Permeability of Hexagonally Packed
Array of Cylinders. Since permeability depends mainly on th
geometry of the medium, i.e., the pore geometry, it is importan
determine the variation of permeability as a function of the por
752 Õ Vol. 67, DECEMBER 2000
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adopted. Finite element models were developed for RVEs of h
agonally packed carbon-coated SiC fibers with porosity val
ranging from 95 percent to 15 percent, corresponding to a volu
fraction range of 5 percent to 85 percent, respectively. The m
mum capacity of a hexagonally packed RVE is a volume fract
of 90.69 percent. A pressure gradient across the RVE was sp
fied ~@38#! and the Navier-Stokes equations for steady flo
through the RVE were solved. Once the steady-state solut
were obtained for the velocities in the RVE, the inlet velociti
were then averaged with respect to the element lengths at the
as shown in Fig. 2, i.e., the average velocity in the RVE is e
mated since this is needed in Darcy’s law. The permeabili
were estimated from Darcy’s law given by Eq.~1!, identical to the
procedure adopted by Gebart@20#. The pressure gradients for eac
volume fraction were calculated from the relation given by Me
ner and Chiang@24# for capillary pressure as

DPcap5~gSV2gSL!
SP

VP
5S SP

VP
DgLV cosu (38)

where gSV, gSL , and gLV are the solid/vapor, solid/liquid, and
liquid/vapor interfacial energies; for the Si/C system these co
spond to the carbon/air, carbon/liquid Si, and liquid Si/air inter
cial energies, respectively.Sp and Vp stand for the surface are
and volume, respectively.

Porosity and Permeability as Functions of Time: Integratio
Once we have the growing radii of the cylinders as a function
time in the RVE, the next step is to obtain the porosity functio
We determine the porosity from the simple areal fraction as
lows ~since the geometry is cylindrical!:

proposity512Vf512
pr 2

AB
512Ro

2
pjo

2

AB
(39)

whereVf is the volume fraction, andA andB denote the dimen-
sions of the RVE. Once we have the porosity functions, we re
back to observe the variation of the permeability with porosi
The remaining task is to substitute for the porosity variation w
time into the permeability relation. Finally, substitution of th
permeability in Darcy’s law describes the motion of the infiltr
tion front. The results from these studies are discussed next.

Fig. 2 Representative volume element with dimensions shown
for calculation of permeability
Transactions of the ASME
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4 Results and Discussion

4.1 Nonisothermal URCS Models: Porosity and Transient
Permeability. Let us first consider Figs. 3, 4 and 5. A signifi
cant effect in the outer radii is observed due to slight change
the values ofG and initial temperatures, respectively. Thus the
two parameters~initial temperatureTi andG! were considered the
most significant factors contributing to drastic changes in perm
ability with time. The depletion of the unreacted core was me
sured from Fig. 3 for different values ofG. Corresponding to
these curves, the growth of the reaction product layer was
tained from Eq.~37! and were plotted on Fig. 4. Porosity func
tions were obtained for Figs. 4 and 5 from Eq.~39! for the RVE
shown in Fig. 2. These functions of time are shown in Figs. 6 a
7, respectively. The permeabilities were then determined a
function of time for each curve by calculating the permeabil
value as a composite function of the porosity values for the RV
The methodology to determine the permeability was as follow
Schematically, ifK was the permeability,u was time andf the
porosity, we findf~u! from Figs. 6 and 7. Then from Fig. 8, we
get K(f) and thus,K@f(u)#. However, f~u! depends on the
outer radiusR(u) given by each curve in Figs. 4 and 5. Eac
curve forR(u) in turn corresponds to a set of parameter values
the nonisothermal URCS models with volume expansion. This
the way micro-macro integration is accomplished.

Fig. 3 Inner moving radii „cylinders … for different values of G

Fig. 4 Outer moving radii „cylinders … for different values of G
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From observations of Figs. 4 and 5, theTi andG values seemed
to influence the porosity functions the most and hence were
lected to generate the permeabilities in Figs. 9–12. In Figs. 9
10, we observe the steep fall in permeability for higher init
temperatures of the solid reactant due to the reaction rate b
very fast compared to diffusion, thus causing a steep increas
R(u), in turn leading to a steep decrease in porosity. This effec
less significant when the initial temperature nearly matches
bulk fluid temperature. This effect would play an important role
deciding preform preheat temperatures while carrying out reac
infiltration for CMCs. In Fig. 10, we observe the same effect as
Fig. 9, except that the values are lower due to the initial volu
fraction being higher for Fig. 10.

The effect of having different systems with differentG values
on permeability are depicted in Figs. 11 and 12 for two init
volume fractions for the RVE shown in Fig. 2. Higher values ofG
give rise to thermally stable systems and lower values resul
instability ~@38#!. The higher permeabilities for highG values are
attributed to lower heats of reaction compared to the heat capa
of solid reactant~unreacted core!. Lower heats of reaction corre
spond to lower exothermicity of reactions and thus slower re
tion rates, thus giving slower rates of decrease of permeabi

Fig. 5 Comparison of isothermal and nonisothermal
unreacted-core shrinking models and the effect of initial tem-
perature of carbon

Fig. 6 Porosity as a function of time and the effect of initial
temperature „hexagonal packing of cylinders … in the Si ÕC sys-
tem
DECEMBER 2000, Vol. 67 Õ 753



a

h

S
o

n
we

ar-

en-
as
For the silicon/carbon system, since the diffusivity of silicon c
bide is extremely low to liquid silicon~refer Table 1!, we would
require the permeability to decrease at a relatively low rate. T
for the silicon/carbon system, for a slow rate of decrease of p
meability, we need to start with a low preheat carbon-coated
temperature. It has also been observed that the heat of reacti

Fig. 7 Porosity as a function of time and the effect of G values
„hexagonal packing of cylinders … in the Si ÕC system

Fig. 8 Normalized transverse permeability values used in this
study „hexagonal packing of cylinders; fixed representative
volume element size …

Fig. 9 Permeability as a function of time for different initial
temperatures, for a starting volume fraction of 0.3 „hexagonal
locking of cylinders … in the Si ÕC system
754 Õ Vol. 67, DECEMBER 2000
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this system differs significantly for different kinds of carbo
~@11,12,44,45#!. Thus we need to select a carbon type such that
get a high heat capacity to heat of reaction ratio~G! values. This
would ensure slower rates of decrease of permeabilities in an
ray of hexagonally packed carbon-coated SiC cylinders.

Finally, an estimate of the three-dimensional permeability t
sor for a hexagonally packed array of cylinders can be given

Fig. 10 Permeability as a function of time for different initial
temperatures, for a starting volume fraction of 0.4 „hexagonal
packing of cylinders … in the Si ÕC system

Fig. 11 Permeability as a function of time for different G val-
ues, for a starting volume fraction of 0.3 „hexagonal packing of
cylinders … in the Si ÕC system

Fig. 12 Permeability as a function of time for different G val-
ues, for a starting volume fraction of 0.4 „hexagonal packing of
cylinders … in the Si ÕC system
Transactions of the ASME
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. As
K̃5S K i hex 0 0

0 K' hex 0

0 0 K' hex

D
where K̃ denotes the permeability tensor, given in terms of
principal axes’ directions for a hexagonally packed array of c
inders. The quantityK i hex is the permeability of the hexagona
RVE to longitudinal flow, which was estimated to a good deg
of accuracy in terms of the hydraulic radius by Messner and C
nag@18#. The second quantityK' hex is the permeability to trans
verse flow obtained from the present work in terms of seve
quantities, namely, the initial temperature of the solid reacta
heat of reaction, heat capacity of the reaction product, densit
product and initial concentration of solid reactant. These val
are given quantitatively for the Si/C system in the form of curv
on Figs. 9 through 12 for two initial volume fractions in the RV
of Fig. 2. It is important to note that some parameters (for i
stance, the pre-exponential factor for the rate constant) for
Si/C system need to be accurately determined and the values
here (as shown in Table 1) are just estimates.Once the perme-
ability tensor is obtained, we can now modify Darcy’s law in E
~1! and write it as follows:

u52
K̃

m
“P (40)

whereu is the macroscopic velocity vector in three dimensionsm
the coefficient of viscosity of the infiltrant, and“P the pressure
gradient in the principal directions. The permeability tensor in E
~40! is now written as

K̃5K̃$f@~jo~u!!#%. (41)

Equation~41! completes the macroscopic~global! description of
reactive infiltration in terms of the microscopic~local! phenomena
accounted for in the transient permeability tensorK̃.

Table 1 Properties used for the Si ÕC system „properties at
1700 K have been used …
Journal of Applied Mechanics
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4.2 Tracking the Infiltration Front. Once the permeability
has been found as a function of time, we can write a nondim
sional form of Darcy’s law as follows:

dx

du
5U5uS m

R2¹PD5K~u! (42)

where here,K is the nondimensional permeability normalized b
R2 as shown in Fig. 8. Herex is the nondimensional ‘‘displace
ment’’ or the position of the infiltration front andU is the nondi-
mensional velocity of the front. Then the position of the front f
flow transverse to the cylindrical fibers can be obtained as

x~u!5E
0

u

K~u* !du* . (43)

~Important assumptions here are that the pressure gradien
constant with time, and that the permeability is spatially consta
In reality, the pressure gradient and the spatio-temporal perm
ability have to be solved for along with the material balan
equation in addition to Eq. (42). Relaxation of these assumpti
is planned for future work.)

The nondimensional infiltration front positions have been pl
ted in Figs. 13 through 16 for the corresponding permeabi
variations already discussed in Figs. 9–12. The integrations w
performed numerically from the permeability values. We obse
that the front advance is very fast during the initial stages
reaction when the rate of permeability decrease is the largest

Fig. 13 Infiltration front displacement for different initial tem-
perature values „initial volume fraction Ä30 percent …

Fig. 14 Infiltration front displacement for different G values
„initial volume fraction Ä30 percent …
DECEMBER 2000, Vol. 67 Õ 755
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the rate of permeability decrease is slower and as the poro
starts to diminish, the advance of the front becomes slower.
effect of high initial temperatures giving very low infiltration i
clearly observed. This is due to the extremely high rate of
crease of permeability. For a higher initial volume fraction~40
percent!, we observe a tendency of the front to come to a co
plete stop~a ‘‘flattening’’ of the curves! faster than lower initial
volume fractions, which is expected. Moreover, we find th
higher the value ofG, we have increased infiltration. Thus lowe
heats of reaction and higher heat capacities of the solid reac
facilitate in maximizing infiltration. The faster rate of pore ‘‘clo
sure’’ or flattening of the infiltration curves for higher initial vo
ume fractions is attributed to the porosity diminishing sooner.

5 Conclusions
A numerical/computational model was developed for react

melt infiltration incorporating micro processes~heat and mass
transfer with chemical reaction and volume expansion! and macro
processes~fluid flow through porous preforms!. This model pre-
dicts permeability as a function of time by an approach wher
six independent equations in six unknowns~from the nonisother-
mal unreacted-core shrinking model! have to be solved numeri
cally at the micro level. The three-dimensional permeability te
sor for hexagonally packed array of reacting cylinders is n
written as

K̃5K̃$f@~jo~u!!#%

Fig. 15 Infiltration front displacement for different initial tem-
perature values „initial volume fraction Ä40 percent …

Fig. 16 Infiltration front displacement for different G values
„initial volume fraction Ä40 percent …
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whereK̃ is the permeability andf the porosity in the RVE written
as a function of the growing outer radius of the reaction prod
layer jo , which in turn is a function of timeu ~and also depends
on various process parameters!. In general for any reacting system
of the first order, it is found that low preheat temperatures ens
lower rates of decrease of permeability. Lower heats of reac
and solid reactants with higher heat capacities facilitate low
rates of decrease of permeability~which is advantageous for th
silicon/carbon system!; in turn this increases the amount of infi
tration before choking off occurs. Thus a suitable combination
solid/fluid reactants has to be used to ensure lower heats of r
tion. The micro and macro models developed here can be app
to a wide variety of systems just by changing the input parame
and the material properties. By tailoring the initial conditions pr
to the onset of infiltration, we can adjust the rate of decrease
permeability to suitably carry out infiltration and arrive at ful
dense products~fully dense being the theoretical density of th
material with zero porosity!.
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Dynamic Plastic Response of a
Submarine Oil Pipeline to an
Underwater Explosion Bubble
Dynamic plastic response of a submarine oil pipeline to an underwater explosion bu
is studied in this paper. A detailed fluid-structure analysis is given to find the fluid fo
acting on the pipeline. Assuming the pipeline is made from rigid, perfectly plastic m
rial, we obtain the hydroplastic equation governing the dynamic plastic deflection of
a pipeline. The equation is analytically solved. Three examples are given to discus
features of the dynamic plastic response and the applicability range of the present a
sis. The relation between the half pipe length and maximum permanent plastic defl
is also given.@S0021-8936~00!01004-7#
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Introduction
The present study is motivated by the recent finding of Wo

War II mines near submarine oil pipelines in the Southeast A
waters~@1#!. To estimate the potential damages the mines mi
result in on the pipelines, a dynamic analysis of such a subma
pipeline subjected to an underwater explosion is the prerequ
for any further actions~like neutralization! to take.

Some of the free spans of the submarine pipelines near
mines are quite long, which are over 10–100 times their dia
eters, or even longer. They may undergo large lateral deflect
and experience high bending stresses when subjected to und
ter explosion loading. Therefore, there exists the risk that the p
lines fail due to large bending deflections and high bend
stresses. This damage mode, known as global damage, is ana
in this paper.

An underwater explosion interacts with the surrounding fluid
two different phases. The first is a transient shock wave, wh
causes a rapid rise in the fluid velocity, and large inertial loadi
The peak pressure of this phase is very high, but its duratio
extremely short. The second phase in the explosion is a ra
pulsation of the gas bubble. Compared with the shock wave in
first phase, this phase is characterized by lower peak pressure
much longer duration. This relation between shock wave
bubble pulse pressures and duration is shown in the sketch of
1 of a continuous pressure-time record at a point 18 meters fro
135 kg TNT charge fired 15 meters below the water surface.
pulsation is a result of the imbalance of internal explosion prod
pressure and the external fluid hydrodynamic pressure. In an
derwater explosion, we must consider these two types of lo
shock wave and bubble pulsation. Because of their quite diffe
time scales, they are usually separately analyzed. The elasti
sponse of a submarine pipeline to shock loading was analyze
Zong et al.@1# and the elastic response of a submarine pipeline
bubble pulsation loading was analyzed by Zong and Lam@2#.

The elastic deflections of the pipelines induced by the bub
pulsation are quite significant~@1#!. It is quite likely for the pipe-
lines to exceed elastic limit and plastically yield. The present
per continues the study of such a pipeline from dynamic ela
deformation to dynamic plastic deformation. We use hydropl

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
29, 1999; final revision, April 5, 1999. Associated Technical Editor: K. T. Rami
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ticity to indicate such inelastic fluid-structure interaction pro
lems. To the best of our knowledge, this problem is studied
detail here for the first time, so the purposes of this paper are~1!
to provide a simple approximate solution with enough accurac
the problem so as to save computational efforts greatly and
vide a reference for more complicated numerical analysis and~2!
to develop some understanding of the features in the dyna
plastic response of a submarine pipeline to a pulsating bubbl

Many papers have been written on bubble dynamics~@3,4#! and
some on bubble-structure interaction analysis~@5,6#!, among
which the simplest model is a Rayleigh bubble. Many papers h
also been written on dynamic plastic deformations of structu
~@7#!, among which a model suitable for the present problem
rigid-plastic simplification. In this paper, the Rayleigh bubble
used to model explosion bubble dynamics, the rigid-plastic ma
rial is used to model the pipeline plastic deflections, and a deta
fluid-structure interaction analysis is given to obtain the hyd
plastic equation governing the dynamic plastic deformation o
pipeline. This equation is analytically solved. Numerical examp
are used to demonstrate the response features and to obtai
relation between the half pipe length and the maximum pla
deflection.

Problem Formulation
Consider a circular steel pipe covered with a layer of reinforc

concrete subjected to a pulsating bubble as shown in Fig. 2.
thickness of the steel pipe ists and that of the concrete layer istc .
The densities of steel and concrete arers and rc , respectively.
The outer radiuses of the steel pipe and the concrete layer arRs
andRc . The elastic modulus for steel and concrete areEs andEc ,
respectively. The inertia moment of the steel pipe isI s and that of
the concrete layer isI c . The pipeline length is 2L. Because the
free span of the pipeline under consideration is much longer t
its radius, the pipeline is simplified as an Euler beam fixed at b

t.
h.

essor
on,
li-Fig. 1 Pressure-time record at 18 meters from a 135 kg TNT
charge
2000 by ASME Transactions of the ASME
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ends. Two coordinate systemsOxyz and O8x8y8z8 are used as
shown in Fig. 3, with the former origin located at the pipe cen
and the latter origin located at the bubble center. The deflectio
the pipeline is described byW(x,t), and the fluid force acting on
the pipe per unit length isf (x,t). It is our purpose in the nex
sections to find bothf (x,t) andW(x,t).

It is assumed the fluid inviscid and incompressible. Then th
exists a potentialF satisfying the Laplacian equation. The seco
assumption is that the maximum pipe radius is much smaller t
the distance from the bubble center to the pipeline center~stand-
off distance!, that is, Rc /R0!1, whereR0 is the stand-off dis-
tance. Then the fluid domain is decomposed into two: one isDb
near the bubble and far away from the pipeline, and the othe
Dp near the pipeline and far away from the bubble. We may w
F5wb1wp , wherewb denotes the potential purely produced
the bubble, andwp denotes all other effects due to the presence
the pipeline. The main disturbance in the fluid is produced by
bubble, from which comes our third assumption: InDb , wb is
much greater thanwp , i.e., wb@wp , and inDp , wb is of same
order aswp , i.e., O(wb)5O(wp). The solution toF can then be
found through solving the two potentialswb andwp , respectively.
This method is somewhat like the matched asymptotic metho
asymptotic analysis. The fourth assumption is that the pipelin
slender, i.e.,«5Rc /L!1. By using the fourth assumption,
three-dimensional flow is locally approximated by a tw
dimensional flow. The fifth assumption is that the maximum pl
tic deflection is small, which will be explained in detail later.

„a… Bubble Dynamics„in Db…. In the domainDb , consider
an underwater explosion bubble, which radius and pressure a
time arez(t) andP(t). The initial radiusz0 and pressureP0 are
given. In this domain,F'wb(x8,y8,z8;t) from our third assump-
tion, and wb satisfies the Laplacian equation and the bound
conditions on the bubble surface

¹2wb5
]2wb

]x82 1
]2wb

]y82 1
]2wb

]z82 50, (1)

]wb

]t
52

Pg

r0
2

1

2
u¹wbu22gd0 at r 85z (2)

Fig. 2 A submarine pipeline subjected to an underwater
explosion

Fig. 3 Interaction between a bubble and a pipeline
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5

]wb

]r 8
, at r 85z (3)

u¹wbu→0, at infinity (4)

wherePg is the pressure inside the bubble,d0 is charge depth,g is
gravity acceleration, andr0 is water density. Inside the bubble
the gas is assumed ideal, and the pressure is uniform. Then
have

Pg

P0
5S 4/3p§0

3

4/3pz3D g

5S §0

§ D 3g

, g51.4. (5)

The solution to Eqs.~1!–~4! is a point source with time-dependen
strengthq(t) located at the center of the bubble of the form

wb5
q~ t !

r 8
. (6)

Substituting Eqs.~5! and ~6! into Eqs.~2! and ~3!, we obtain

dq

dt
52

z

r0
S §0

§ D 3g

2
q2

2§22gzd0 , (7)

dz

dt
52

q

z2 , (8)

q~ t !52z2ż. (9)

Equations~7! and ~8! are nonlinear, and can be numerically int
grated using the Runge-Kutta method once the initial conditi
are given. Its solutions are two time-dependent functionsq(t) and
§(t).

„b… Fluid Forces on the Pipeline„in Dp…. Introducing the
following nondimensional quantities in domainDp ,

x̄5
x

L
, ȳ5

y

Rc
, z̄5

z

Rc

we have

]F

]x
5

1

L

]F

] x̄
,

]F

]y
5

1

Rc

]F

] ȳ
,

]F

]z
5

1

Rc

]F

] z̄
.

Because«5Rc /L!1 and the derivatives with respect to the no
dimensional quantities are of same order, the above equat
indicate that

]F

]x
!S ]F

]y
,
]F

]z D ,
]2F

]x2 !S ]2F

]y2 ,
]2F

]z2 D . (10)

Thus, in the fluid domain near the pipeline, the three-dimensio
flow is locally approximated by a two-dimensional one
sketched in Fig. 3. Moreover, from the fourth assumption,
conclude that (y,z)!R0 in domainDp . Then wb takes the fol-
lowing asymptotic form inDp ,

wb5
q

A~y1R0!21z21x2
'

q

AR0
21x2 S 12

yR0

R0
21x2D ,

(11)
]wb

]y
'2

qR0

~R0
21x2!3/25v.

With such approximations, we obtain

¹2F5
]2F

]y2 1
]2F

]z2 50, in Dp

]F

]r
5

]W

]t
cosu, at r 5Rc , (12)

]F

]r
50, at infinity
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where u is defined in Fig. 3. Becausewb is known, the above
equations uniquely determinewp . We may further writeF in the
form of

F5wb1wD1wR ,

wherewD is the diffraction flow filed induced by the pipeline fre
of any deformations, satisfying

¹2wD50,

]wD

]r
52

]wb

]r
52v cosu, at r 5Rc , (13)

u¹wDu→0 at infinity.

The solution to the above problem is well known of the form

wD5v
Rc

2

r
cosu. (14)

wR is the radiation potential produced purely by the deflection
the pipeline, satisfying

¹2wR50,

]wR

]r
5

]W

]t
cosu, at r 5Rc , (15)

u¹wRu→0, at infinity.

Similarly, the solution is

wR52
]W~x,t !

]t

Rc
2

r
cosu. (16)

Because Rc /R0!1, the linearized Bernoulli’s equationP
52r0]F/]t is used to find the pressure on the pipeline. The fl
force per unit length is then obtained by integrating pressureP on
the pipeline surface,

f ~x,t !5 R
C~x!

P~x,y,z;t !nydl~x!

52r0 R
C~x!

F]wb

]t
1

]wD

]t
1

]wR

]t Gnydl~x!, (17)

where *C(x)(•)nydl(x) is the contour integral at sectionC(x).
Substituting Eqs.~11!, ~14!, and~16! into Eq. ~17!, we obtain

f ~x,t !5pr0Rc
2v̇1pr0Rc

2v̇2pr0Rc
2

]2W

]t2 52mav̇2ma

]2W

]t2 ,

(18)

wherema5pr0Rc
2 is the added mass of a circular section in w

ter. The first term is the bubble-induced force without diffracti
effect considered. The second term is caused by the diffrac
effect. They are identical here. In general cases, however, the
not necessarily identical. The third term is radiation force cau
by the pipeline motion.

„c… Fluid-Pipe Interaction Equation. Consider the pipe-
line of the section as shown in Fig. 2, with the outer pipe be
reinforced concrete and the inter pipe being steel. The equiva
bending stiffnessEI and equivalent massme per unit length are
given by

EI5EcI c1EsI s , me5prs@Rs
22~Rs2ts!

2#1prc@Rc
22Rs

2#.
(19)

Suppose the pipeline is made from the rigid-plastic materia
shown in Fig. 4 and is subjected to a pure momentM. The limit
cross-sectional momentM0 of the pipeline is obtained by
integration
760 Õ Vol. 67, DECEMBER 2000
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M052sc
0E

Rs

Rc

r 2drE
0

p

sinudu12ss
0E

Rs2ts

Rs

r 2drE
0

p

sinudu

5
4sc

0

3
~Rc

32Rs
3!1

4ss
0

3
@Rs

32~Rs2ts!
3# (20)

wheresc
0 andss

0 are yield stresses of concrete and steel, resp
tively. It has been observed that the influence of the lateral sh
forces on the magnitude of the plastic limit moment of a cro
section may be disregarded for most beam structures~@8#!. By
assuming that the deflection is small, the dynamic behavior of
pipeline is governed by the equations

Q5
]M

]x
, (21)

]Q

]x
52 f ~x,t !1me

]2W

]t2 (22)

whereQ is shear force at a section. Substituting Eq.~21! into Eq.
~22! gives

]2M

]x2 52 f ~x,t !1me

]2W

]t2 ,

which, when using Eq.~18!, becomes

]2M

]x2 5~ma1me!
d2W

dt2
22mav̇5~ma1me!

]2W

]t2 2p~x,t !

(23)

where

p~x,t !52mav̇, v̇5
~2zż21z2z̈ !R0

A~R0
21x2!3

(24)

obtained from Eqs.~9! and ~11!. A uniform dynamic loading
p(x,t)5p(t) may cause a plastic deflection ifp(t). f c

54M0 /L2, wheref c is the limit static loading~@4#!. Beyondf c ,
there are two types of plastic deformations: Iff c,p(t)<3 f c ,
there is one stationary plastic hinge in the middle of the span
p(t).3 f c , the deformation diagram is characterized by two sy
metrically located nonstationary plastic hinges. In the portion
tween the hinges, the bending moment isM0 and the portion
constitutes a plastic section. The end sections behave as abso
rigid parts. The boundary between the rigid and plastic sec
changes its position during deformation: Bending waves pro
gate along the pipeline. In this paper, we only consider the form
casef c,p(t)<3 f c , so the deflection profile is defined by~sta-
tionary plastic hinge in the middle!

W~x,t !5w~ t !~12x/L !, 0<x<L. (25)

Fig. 4 Elastic, perfectly plastic and rigid, perfectly plastic
uniaxial stress-strain idealizations
Transactions of the ASME



g

n

t

t

e
k

s
l

um
ller,
eo-

, the
ield
r of
are

line
am-

for

ions
ent
For
at
t
ns
the
the

tion
,
re,

ical
The pipeline is, therefore, idealised as two rigid arms~i.e.,
2M0,M,M0! which are connected by the central plastic hin
(M5M0). Substituting Eq.~25! into Eq. ~23!, Eq. ~23! may be
integrated spatially,

M5~ma1me!S x2

2
2

x3

6L D d2w

dt2

22ma~2zż21z2z̈ !A11S x

R0
D 2

1M0 , (26)

where the arbitrary constants of integration have been determ
from the requirements thatM5M0 and Q5]M /]x50 at x50.
Using M52M0 at x5L, we obtain

d2w

dt2
5

6M0

~me1ma!L2 F ma

M0
~2zż21z2z̈ !A11S L

R0
D 2

21G
(27)

subject to the initial conditionsw5ẇ50. This is the equation
governing the plastic deflections with time. The pipeline does
commence to plastically deform untilp(x,t)> f c . If Eq. ~27! is
integrated with respect to time, then

dw~ t !

dt
5

6M0

~me1ma!L2 F ma

M0
~z2ż !A11S L

R0
D 2

2tG (28)

w~ t !5
6M0

~me1ma!L2 F ma

3M0
A11S L

R0
D 2

~z32z0
3!2

t2

2 G .
(29)

The pipeline reaches its permanent position whenẇ50.

Numerical Results and Discussions
As a first example, consider a bubble of initial radius§0

50.75 m and initial pressureP054.53107 N/m2. The charge
depth is 45 m. The results obtained from Eqs.~7! and ~8! are
shown in Fig. 5 with solid lines, and the results given by Verm
@9# are shown with dashed lines. Both are in good agreemen

To derive the dynamic plastic response Eq.~27!, we assume
that the deflection is small. To check the applicability of th
assumption, we will compare it with more accurate theories,
is, finite-deflection theories developed by Jones@10#. Consider a
fully clamped beam which is subjected to uniformly distribut
dynamic pressure pulse without fluid-structure interaction ta
into account. The pressure pulse is of rectangular shape with
spect to time with peak pressurep0 and durationt. The results
obtained from finite-deflection theories and the present method
shown in Fig. 6. In the figure, the lower and upper bounds refe
the bounds on the yield surface, and are obtained using a sq
yield curve. The parameters in the figure are beam thicknesH,
impact densityI 5p0t/(meH f c). M0 is the limit cross-sectiona

Fig. 5 Comparison of the bubble radius calculated from
present paper and Vermon †6‡
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moment. From the figure, we observe that when the maxim
deflections are of the order of one-half beam thickness or sma
the permanent deflections predicted by the finite-deflection th
ries and the small-deflection theory are quite close. Therefore
small-deflection theory used in this paper is expected to y
good results when the maximum deflections are of the orde
one-half pipeline thickness, or when the maximum deflections
of the order of the pipeline radius.

In the third example, a practical case that submarine oil pipe
is subjected to an explosion bubble is considered. Material par
eters are:ss

052.53108 N/m2, ts50.011176 m, Rs50.5588 m,
rs57800 kg/m3, sc

052.03107 N/m2, Rc50.6985 m, rc52400
kg/m3. The initial conditions for the bubble arez050.5 m and
P051.83108 N/m2. Charge depth is 45 m.

The time history of the plastic deflection at the midspan
R0550 m obtained from Eq.~29! is shown in Fig. 7, withL
520 m, 30 m, and 40 m, respectively. There are two observat
from this figure. First, short span pipelines reach their perman
positions faster than long span pipelines for the same bubble.
example, the pipelineL520 m reaches its permanent position
t50.09 seconds, and the pipelineL540 m reaches its permanen
position att50.15 seconds. Secondly, the maximum deflectio
of short pipelines are larger than those of long pipelines for
same bubble. As shown in Fig. 7, the maximum deflection of
pipelineL520 m is 0.226 m, and that of the pipelineL540 m is
0.147 m.

Figure 8 shows the relation between the maximum deflec
and half pipe length. Three standoff distances are consideredR0
540, 50, and 70 m, respectively. For each curve in the figu
there is a jump. The limit moment is proportional toL2, and thus
a shorter pipeline has higher limit moment. There exists a crit

Fig. 6 Maximum permanent transverse deflection versus a
nondimensionalized impulse parameter for a fully clamped
beam which is subjected to a uniformly distributed dynamic
pressure

Fig. 7 Time history of the plastic deflections of midspan for
R0Ä50 m
DECEMBER 2000, Vol. 67 Õ 761
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half pipeline length, below which the pipeline does not plastica
deforms, and above which the pipeline yields with plastic hin
formed in the middle. Once plastic hinge is formed, the deflect
is proportional to the reciprocal of the squared half pipe lengthL2,
and thus a shorter pipeline has larger plastic deflections. Th
two reasons lead to the jump in each curve in Fig. 8. The poin
which the jump occurs is the critical half pipeline length.

The above analysis is valid forf c,p(t)<3 f c . In all the above
computations, this condition is checked and satisfied. The cas
p(t).3 f c will be considered in our future work.

Conclusions
In this paper, a detailed fluid-structure interaction analysis w

given to obtain the equation governing the dynamic plastic
sponse of a pipeline subjected to the bubble. The equation
analytically solved.

Fig. 8 Relation between half pipe length and maximum plastic
deflection
762 Õ Vol. 67, DECEMBER 2000
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Numerical examples show that there exists a critical half p
length, below which the pipeline does not deform plastica
Once the pipeline yields, the maximum plastic deflection is p
portional to the reverse of squared half pipe length.

The present analysis applies to distant explosion and the m
mum plastic deflection is smaller than the pipe radius.
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Energy-Based Stochastic
Estimation for Nonlinear
Oscillators With Random
Excitation
A physically based averaging procedure is applied to a general form of a nonlin
single-degree-of-freedom equation, with nonwhite random excitation, leading to a
dimensional continuous Markov model for the energy envelope. It is demonstrated th
combination with an energy-based technique for estimating the potential energy fun
the Markov model can be used as the basis of a stochastic identification metho
estimating the spectrum of the excitation, the static nonlinear restoring character
and the nonlinear damping function, from measurements of the response alone. Mo
it is shown that, by combining results for two levels of stochastic excitation, it is pos
to obtain good estimates of damping and stiffness parameters, both linear and nonl
@S0021-8936~00!02304-7#
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1 Introduction
The problem of predicting the dynamic response of flexi

structures to random environmental loading occurs in a numbe
engineering fields. Examples include the wave-induced motio
offshore structures and the vibration of tall buildings in a turbul
wind. Although the general features of the appropriate equat
of motion are usually known there are often fairly major unc
tainties regarding the magnitude, or even the form, of vari
terms. This is particularly true in cases of fluid-induced load
where, due to the complexity of the flow processes involved, i
frequently difficult to quantify the damping and excitation term
Thus there is considerable interest in testing the validity of ex
ing design methods through an analysis of experimental d
Such an analysis can be applied to either full-scale or model
data.

In cases where measurements of both the excitation forces
the corresponding system response are available then it is pos
to estimate unknowns in the system equations through an app
tion of deterministic system identification techniques~e.g., see
Masri and Caughey@1#, Chassiakos et al.@2#, and Yasuda et al
@3#!. A wide variety of these are now available~e.g., see Unbe-
hauen and Rao@4#!. However, in many cases in engineering pra
tice it is impractical, or actually impossible, to measure the ex
tation process. As an example, in the case of a tower struc
responding to turbulent wind excitation, the actual motion of
tower can be measured but the wind excitation forces experien
by the structure are unmeasurable, even in controlled model t

To deal with such problems it is necessary to model the e
tation as a stochastic process and to derive estimates of the
known quantities, such as damping, from measurements of
system response alone. If the system is linear this type of stoc
tic system identification problem can be treated through appl
tion of spectral identification methods and the random decrem
technique~e.g., see Feng et al.@5#!. Thus, for example, if the
excitation is wide-band and the damping is light, the reson

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, Aug. 14, 2000. Associate Technical Editor: A. A. Fe
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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peaks in the response spectra provide information on the stiffn
and damping properties of the system. However, if the system
nonlinear, with respect to damping, and possibly also stiffne
then the estimation problem is much more difficult.

The principal author, with co-workers, has proposed a num
of possible techniques for addressing this nonlinear stocha
identification problem over the last few years~Roberts et al.@6–9#
and Battaini and Roberts@10#!. In this work the excitation was
assumed to be a stationary Gaussian white noise, but more
cently ~Vasta and Roberts@11# and Roberts and Vasta@12#! a
method of dealing with non-Gaussian excitation, with a specifi
parametric form, has been developed, based on the use of hig
order spectra. All the methods proposed so far have two b
limitations. First, they do not allow the damping term~s! to be
estimated directly, when these are nonlinear, with reasonable
curacy. Thus, for example, in previous attempts to apply Mark
process theory~Roberts et al.@6,9#! only the ratio of the damping
to the excitation could be determined and their separation requ
the additional estimation of an equivalent linear damping. S
ondly, they do not provide a nonparametric means of estima
the spectrum of the excitation: this is important because in m
applications even the parametric form of the excitation pow
spectrum is unknown.

In this paper an alternative approach is proposed which, for
case of a nonlinear oscillator responding to stationary rand
excitation, overcomes these two limitations. The method relies
the fact that, when the damping is light, the energy envelope
the response is approximately a one-dimensional Markov proc
even when the excitation is nonwhite~e.g., see Krenk and Robert
@13#!. Estimates of the drift and diffusion coefficients of the e
ergy envelope process are estimated from the response data
compared with the corresponding theoretical expressions for th
coefficients. From the diffusion coefficient estimate an estimate
the power spectrum of the excitation is directly obtainable. Hen
using the estimate of the drift coefficient the nonlinear damp
can be estimated.

In the first part of the paper the theoretical basis for the Mark
model of the energy envelope is derived in a compact and sim
fied manner. It is then shown how the estimation method propo
here, based on the energy envelope, can be combined with a
nique proposed earlier by Roberts et al.@6# for estimating the
linear and nonlinear stiffness parameters. Although the latter
validated earlier for while noise excitation only it is also app
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tic
cable when the excitation is nonwhite, as will be demonstrate
this paper. The combination of these methods allows a comp
determination of all the damping and restoring terms in the eq
tion of motion, both linear and nonlinear, together with an estim
tion of the input power spectrum, from measurements of the
sponse displacement alone. A method of significantly improv
the accuracy of estimation for the nonlinear damping and stiffn
parameters is then proposed, based on an analysis of the res
process at two different excitation levels.

The authors have discussed an estimation scheme based o
drift and diffusion coefficients in an earlier study, of much mo
limited scope, specific to ship roll motion in random seas~Roberts
and Vasta@14#!. In this work it was assumed that the stiffne
parameters of the system are known a priori and that the resto
characteristic was of the softening kind. The latter assumpt
which is relevant to ship roll, means that the response can
reach stationary conditions. This imposes a severe restrictio
the extent to which the method can be validated through app
tion to simulated data. Moreover, the method of improving
accuracy of the parameter estimates by using response data a
different levels, referred to above, was not considered.

To validate the proposed methods they are applied to s
simulated data relating to a Duffing oscillator with linear-pl
quadratic damping and nonwhite random excitation.

2 The Equations of Motion
An equation of motion of a single-degree-of-freedom syste

of the following general form

ẍ1«2ẋh~x,ẋ!1g~x!5«y~ t !5z~ t ! (1)

is considered here. Hereẋh(x,ẋ) is the nonlinear damping force
andg(x) is a nonlinear restoring force.h(x,ẋ) is assumed to be a
positive function ofx andẋ while g(x) is taken to be an antisym
metric function ofx, of the nonsoftening kind.

The excitationy(t) will here be modeled as a stationary rando
process, with zero mean and a power spectrumSy(v), defined by
the relation

Sy~v!5
1

2p E
2`

`

wy~t!cosvtdt (2)

where

wy~t!5E$y~ t !y~ t1t!% (3)

is the covariance function of the excitation andE$ % is the expec-
tation, or ensemble averaging operator.

The scaling parameter« is introduced into Eq.~1! to help
clarify the order of magnitude of the damping and excitation ter
in the subsequent analysis. It will be assumed throughout tha
damping is small: Hence« is small. The scaling of the excitatio
given in Eq. ~1! ensures that the variance of the stationary
sponse remains finite as«→0: i.e., is of order«0, with respect to
« ~see Roberts and Spanos@15#!. There is no loss of generality
implied by scaling the excitation in this way: It simply reflects t
fact that, as the response reaches stationarity, the contributio
the damping and excitation forces becomes relatively weaker
ing a typical cycle in the response, compared to the total ene
~kinetic plus potential! in that cycle.

The total energy envelope processE(t) associated with the re
sponse is as the sum of kinetic and potential energies: Thus

E~ t !5
ẋ2

2
1V~x! (4)

where

V~x!5E
0

x

g~j!dj. (5)
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It is possible to rewrite the equation of motion in terms ofE(t)
and an associated phase process,F, defined by the relationships

sgn~x!AV~x!5AE cosF, (6)

ẋ52A2E sinF (7)

The result is two first-order equations, as follows:

F Ė

Ḟ
G5F 2«2a1

2«2a21g G1Fb1

b2
G«y~ t ! (8)

where

a152Eh sin2 F, (9)

a252h sinF cosF, (10)

g5
ug~x!u
V~x!

(11)

b152A2E sinF, (12)

b252
cosF

A2E
. (13)

3 Markov Modeling
If the damping is light then it is possible to approximate t

energy envelope processE(t) as a one-dimensional, continuou
Markov process. In the theory leading to this approximation,
developed earlier~@16#!, use was made of the Stratonovitch
Khasminskii ~SK! limit theorem ~@15#!. Recently an alternative
approach to the derivation of a Markov model has been develo
~@17#!, based on physical reasoning, which gives much gre
insight into the nature of the approximations involved. This ana
sis shows that a small correction is needed to the result obta
by the SK limit theorem: However, a comparison with simulati
results has revealed that this correction is negligible in nearly
circumstances~@17#!. Here a brief and simplified account of thi
physically based approach is given.

3.1 The Markov Process Approximation. A fundamental
assumption, in developing a Markov model, is that it is possible
find an interval of timeDt such thatDt.tcor , wheretcor is the
correlation time scale of the excitation, but small enough that
change of energyDE5E(t1Dt)2E(t), in that interval, is rela-
tively small. This requirement can be met if the damping is s
ficiently light: As the bandwidth of the excitation increasestcor
becomes smaller, and the restriction on the damping level redu

If the coefficients defined by

Hn~E!5
1

Dt
E$DEn% n51,2, . . . (14)

are such thatHn(E)50, for n.2, and both

m~E![H1~E!, (15)

D~E![H2~E! (16)

approach a limiting value, for smallDt ~subject toDt.tcor!, then
E(t) can be modeled, approximately, as a Markov process~e.g.,
see Gardiner@18#!. The coefficientsm(E) andD(E) are known,
respectively, as the drift and diffusion coefficients.

This Markov process is governed by the following stochas
Itô equation

dE5mdt1D1/2dW (17)

whereW is a unit Wiener~or Brownian! process.

3.2 Averaging the Dissipation Terms. If s is some time in
the intervalt to t1Dt then one can write

E~s!5E01e~s! (18)
Transactions of the ASME
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F~s!5F0~s!1u~s! (19)

whereE0 , F0 are the free undamped solutions («50). From Eq.
~8!

E05a constant (20)

and

F05E g0dt (21)

whereg0 is the variation ofg in the case of free undamped mo
tion. As a first step in developing the Markov model the dissip
tion terms,a1 anda2 in Eqs.~8!, can be averaged over the perio
of free undamped oscillation,T(E), treatingE as a constant dur
ing this period and settingF5F0 . The equations of motion then
become

F Ė

Ḟ
G5F 2«2L1

2«2L21g G1Fb1

b2
G«y~ t ! (22)

where

L1~E!5
2E

T~E! R h~E,F0!sin2 F0dt, (23)

L2~E!52
1

T~E! R h~E,F0!sinF0 cosF0 dt. (24)

In the subsequent analysis only the first of these avera
damping functionsL1(E) is required. This function can be ex
pressed as

L1~E!5
2E

T~E! (
n51,3, . . .

`

sn
2 R h~E,F0!sin2 nv~E!tdt (25)

using a Fourier expansion of sinF0, as follows:

sinF0~ t !5 (
n51,3, . . .

`

sn sinnv~E!t. (26)

The period of free undamped oscillation is given by

T~E!5
2p

v~E!
52&E

0

b dj

A@E2V~j!#
(27)

where b is such thatV(b)5E and v(E) is the corresponding
frequency.

3.3 Evaluation of the Drift and Diffusion Coefficients.
On integrating the first row of Eq.~22!, over the intervalt to t
1Dt, and using the definition of the drift coefficient given b
Eqs.~14! and ~15!, one obtains the expression

m~E!52«2L1~E!1
«

Dt Et

t1Dt

E$b1y%du. (28)

The integral term is nonzero due to the correlation betweenb1
andx.

To evaluate the integral,b1 can be expanded about its dete
ministic evolution, corresponding to«50, denoted b1,0
5b(E0 ,F0). Thus, fort,u,t1Dt,

b1~u!5b1,0~u!1S ]b1

]E D
0

u

e~u!1S ]b1

]F D
0

u

u~u!. (29)

Here the notation ( )0
u means that the quantity in the bracket r

lates to free undamped oscillation and is evaluated at timeu. The
terms of higher order than unity, with respect toe and u, have
neglected. The expansion is thus correct to order«. On substitut-
ing this expansion into Eq.~28! and using the fact that the contr
bution of the first term is zero~sinceE$y(t)%50!, one obtains
Journal of Applied Mechanics
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m~E!52«2L1~E!1
«

Dt Et

t1DtS ]b1

]E D
0

u

E$e~u!y~u!%du

1
«

Dt Et

t1DtS ]b1

]F D
0

u

E$u~u!y~u!%du. (30)

An expression fore(u) can be obtained by integrating the e
ergy equation~first row of Eq. ~22!!. To evaluate the second in
tegral term it is necessary to obtain an expression foru(u). As a
first step the termg ~see Eq.~11!! can be expanded about its valu
when excitation and damping is absent in a similar way to
method used forb1 . Thus

g~ t !5g0~ t !1S ]g

]ED
0

t

e~ t !1S ]g

]F D
0

t

u~ t !. (31)

Again this expansion is correct to order«. A detailed examination
has shown~@17#! that the terms second and third terms on t
right-hand side have a negligible contribution. Hence on sim
fying and integrating the phase equation to obtain an expres
for u(u), and using the expression for onee(u), one finds from
equation~30! that correct to order«2,

m~E!52«2L1~E!1
«2

Dt Et

t1DtE
t

u

@sinF0~u!sinF0~v !

1cosF0~u!cosF0~v !#wy~u2v !dvdu

52d~E!1
p

2 (
n51,3, . . .

`

~sn
21cn

2!Sz@nv~E!# (32)

where cn are Fourier coefficients in the expansion of cosF0(t)
~c.f. Eq. ~25!! and the last step relies on the assumption thatDt
.tcor . In Eq. ~32! d(E)5«2L1(E) is the average of the actua
damping force andSz(v)5«2Sy(v) is the power spectrum o
z(t)5«y(t), the actual excitation process.

In the special case where the excitation can be modeled
white noise then this result reduces to a result has been obta
earlier by Stratonovitch@19# using a different argument.

The diffusion coefficient is much easier to calculate than
drift coefficient. From Eq.~26! one finds immediately that, correc
to order«2,

D~E!5
«2

Dt Et

t1DtE
t

t1Dt

b1,0~u!b1,0~v !wy~u2v !dudv

5
«22E

Dt E
t

t1DtE
t

t1Dt

sinF0~u!sinF0~v !wy~u2v !dudv

52pE (
n51,3, . . .

`

sn
2Sz@nv~E!#. (33)

Again, the last step here follows from the assumption thatDt
.tcor . In the particular case of white noise excitation, Eq.~33!
reduces to a result obtained earlier by Stratonovitch@19#.

Numerical studies have shown that, in nearly all cases, the
terms in the summations in Eqs.~25!, ~32!, and ~33! are com-
pletely dominant. Hence, subsequently in this paper, the sum
tions are assumed to be truncated atn51 for computational
purposes.

4 Stochastic System Identification
The theory given earlier in this paper can also be used

stochastic estimation purposes. The stochastic identification p
lem of concern here can be stated as follows: From a single m
sured time history of the displacement response,x(t i)[x( idt)
( i 51,2, . . .N), wheredt is the sampling interval, together with
stationary stochastic process model of the excitation, how can
DECEMBER 2000, Vol. 67 Õ 765
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generate estimates of the static restoring characteristic, the d
ing function, and the power spectrum of the excitation?

In this paper a new method of completely solving this stoch
tic estimation problem is proposed. It is partly based on the the
developed in Section 2 and, in particular, on the approximate
oretical expressions obtained there for the drift coefficient~see Eq.
~32!! and the diffusion coefficient~see Eq.~33!!. Both these co-
efficients can be estimated directly by suitably processing
measured response datax(t i) using the definitions given by Eqs
~14! to ~16!. Prior to application of this method, however, it
necessary to estimate the potential energy functionV(x) and the
static restoring functiong(x) from the displacement respons
data.

4.1 Estimation of the Potential Energy Function and the
Static Restoring Characteristic. For light damping the dis-
placement response is oscillatory, with well-defined peaks. At
zero-crossing times, denotedtzi( i 51,2, . . . ), thetotal energyE is
equal toẋ2(tzi)/2. Hence estimates ofE, at these times, can b
obtained from estimates of the response velocity. By fitting
curve through these estimates it is possible to estimateE at the
intermediate times,tpi( i 51,2, . . . ) where the sample function
has maxima or minima. At the peak values the response velo
is zero: HenceE(tpi)5Vbx(tpi) c and the interpolated values ar
actually estimates ofV. These estimates may be plotted agai
the corresponding peak amplitudes,x(tpi), the number of such
estimates equalling the number of peaks in the sample func
Thus an estimate of the potential energy function is obtainab

The restoring functiong(x) can be derived from the estimate
potential energy function usingg(x)5dV/dx. However, a more
robust way of estimatingg(x) is to base the analysis on a linea
in-the-parameters representation ofg(x) andV(x): e.g.,

g~x!5(
i 51

M

a iGi~x!, (34)

V~x!5(
i 51

M

a iWi~x!, (35)

where

Wi~x!5E
0

x

Gi~j!dj (36)

and a i are stiffness parameters. Thus, the stiffness parame
and henceg(x), can be estimated by fitting the above parame
form for V(x) to the estimate of this function. This can be do
using simple least-square fitting~linear regression!.

4.2 Estimation of the Damping Function and the Input
Power Spectrum. The displacement response data can be c
verted to energy samplesE(t i) using the definition ofE given by
Eqs.~4! and~5!, and the estimated potential energy function fou
by using the method outlined in the previous section.

Suppose that an interval of timeDt5mdt is chosen and the
increments

DEi5E~ t i !2E~ t i 2m! i 5m11, . . . ,N (37)

are computed. Then the energy range is divided up into a num
of contiguous ‘‘slots,’’ each of widthdE such that for thej th slot
covers the energy range (j 21)dE to j dE( j 51,2, . . . ). Each
DEi is assigned to the slot for whichj dE,E(t i 2m),( j
11)dE. Estimates of the drift and diffusion coefficients may no
be generated by averaging theDEi values, and their square
within each slot: Thus

m̂~Ej !5
1

njDt (
~ j 21!dE,E~ t i 2m!, j dE

DEi (38)
766 Õ Vol. 67, DECEMBER 2000
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D̂~Ej !5
1

njDt (
~ j 21!dE,E~ t i 2m!, j dE

~DEi !
2 (39)

whereEj is the mid value ofE, in the j th slot andnj is the number
of DEi values obtained forj th slot.

For identification purposes a correspondence between thes
timates and the theoretical values, given by Eqs.~32! and~33!, is
required: This will clearly depend on the choice ofDt. If Dt is too
small thenDt,tcor , contravening one of the basic assumptions
the theory. On the other hand ifDt is too large then theDEi will
become large, whereas the theory assumes small changes i
ergy level over the intervalDt. For lightly damped systems, a
least, one can expect the estimates of the coefficients, give
Eqs.~38! and~39!, to be almost independent ofDt over a signifi-
cant ‘‘stable’’ range ofDt values and to correspond well with th
theoretical expressions within this range. The correlation ti
scale of the excitationtcor will not be known in practice but one
can evaluate the drift and diffusion coefficients for a range ofDt
and choose aDt value within the stable range.

Using Eq. ~33! it is possible to generate an estimate of t
power spectrum of the excitation processy(t) directly from
D̂(Ej ). Thus

Ŝy~v j !5
D̂~Ej !

2pEjs1
2 (40)

where

v j5v~Ej ! (41)

To evaluates1
2 a knowledge of the restoring characteristic is r

quired. This can be obtained directly from the data, using
method described in Section 4.1.

OnceŜy(v j ) is determined then the averaged damping funct
can be estimated by using Eq.~32!: Thus

d̂~Ej !52m̂~Ej !1
p

2
~s1

21c1
2!Ŝy~v j !. (42)

To evaluate the Fourier coefficients in this expression a kno
edge of the restoring characteristic is again needed, in gener

4.3 Damping Parameter Estimation. If a linear-in-the-
parameters form of the damping function«2ẋh(x,ẋ) in Eq. ~1! is
assumed, i.e.,

«2ẋh~x,ẋ!5(
i 51

p

b i ẋhi~x,ẋ! (43)

whereb i are damping parameters, then from Eq.~25!

d~E!5(
i 51

P

b iHi~E! (44)

where

Hi~E!5
2E

T~E! R hi~E,F0!sin2 F0dt. (45)

The damping parameters can be estimated by fitting the para
ric form for d(E) to the estimate of this function, obtained from
Eq. ~42!, using simple linear regression.

5 An Example
To illustrate the method, and to validate it, through applicat

to some simulation data, a particular form of Eq.~1! is chosen
where

ẍ1Aẋ1Bẋuẋu1k1x1k2x35Z~ t !. (46)

This represents a Duffing oscillator with nonlinear damping of
linear-plus quadratic type. On nondimensionalizing time with
Transactions of the ASME
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spect to the linear undamped natural frequency,v05Ak1, and the
response displacement with respect toX5Ak1 /k2, Eq.~46! can be
recast as

ẍ1aẋ1bẋuẋu1x1x35z~ t !. (47)

5.1 Theoretical Calculations. As an initial step in the ap-
plication of the theory it is useful to obtain a solution to th
equation of motion for free undamped oscillation~i.e., Eq. ~47!
with a5b5z(t)50!. This solution can be expressed as

x~ t !5x0cn~ṽtum! (48)

wherecn is the Jacobian elliptic function,x0 is the amplitude of
oscillation, and

ṽ5~11x0
2!1/2, (49)

m5
x0

2

2~11x0
2!

. (50)

The period of oscillation is given

T~E!ṽ54K~m! (51)

whereK(m) is the complete elliptic integral.
To evaluate the drift and diffusion coefficients, according

Eqs. ~32! and ~33! it is necessary to find expressions for sinF0
and cosF0. The former is given by

sinF0~ t !5
1

~12m!1/2 sn~ṽtum!dn~ṽtum! (52)

wheresn and dn are further Jacobian functions. Hence one c
obtain cosF0. As m→0 sinF0→sin t and cosF0→cost, which is
the linear result. With increasingm deviations from the harmonic
motion become more pronounced with a maximum distortion
m50.5 ~the highest possible value form!.

It is also necessary to calculate the coefficientss1 andc1 which
relate, respectively, to the Fourier expansions of sinF0 and
cosF0. An expression fors1 can be found analytically: The resu
is

s15
p2q1/2

K2~m!@m~12m!#1/2~11q!
, (53)

where

q5expH 2
pK~12m!

K~m! J . (54)

It does not seem possible to obtain an analytical expression
c1 : However, this coefficient is easy to compute numerically.

The damping term,d(E), is also required in the calculation o
the drift coefficient. This can be evaluated numerically from E
~25!. If the Fourier expansion is truncated at the first term o
obtains

d~E!5as1
2E11.20bs1

2E3/2. (55)

5.2 Simulation Method. For the purpose of testing the e
timation method it is convenient to choose a band-limited exc
tion process, having a power spectrum with a single, well-defi
peak. A suitable process can be obtained by filtering white no
n(t), through two identical first-order linear filters, placed in s
ries. The output,h(t), is obtained from

ḣ1bh5bl~ t !, (56)

l̇1bl5bn~ t !. (57)

If two such filtering operation are applied to independent wh
noises the resulting outputs,h1(t) andh2(t), may be combined to
form the input process

y~ t !5huh1~ t !cosvpt1h2~ t !sinvptu. (58)
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The power spectrum ofy(t), so defined, is given by

Sy~v!5KF H 1

b21~v2vp!2J 2

1H 1

b21~v1vp!2J 2G (59)

whereK is a scaling constant. For smallb this spectrum has a
single peak in the neighborhood of the frequencyvp . The param-
eter b controls the bandwidth of the excitation whilevp deter-
mines the position of the peak, relative to the linear undam
natural frequency (v51).

The equation of motion was solved numerically, using t
fourth-order Runge Kutta algorithm, to generate sample functi
of the displacement response.

5.3 Simulation Results: Single Excitation Level. A dy-
namical system governed by Eq.~46!, for which both the stiffness
and damping terms were nonlinear~A50.01, B50.01 andk1
51, k251!, was chosen for study. A number of sample functio
of the responsex(t i) ~referred to here as blocks of data! were
computed where, for each block,t i5 idt, i 51,2, . . .,100,000 and
dt50.05. Thus each block was of length 5000 and contain
about 1000 cycles. The input spectrum parameters were chos
be b51 andvp52.

The first stage in the estimation process is to obtain estimate
the stiffness coefficients,k1 andk2 , using the method described i
Section 4.1. Figure 1~a! shows the variation of estimated energ
level with one half of the square of the peak amplitud
(x2(tpi)/2), obtained from a single block of data. For comparis
the corresponding theoretical variation, calculated from the ex
values of the parameters (k15k251), is also shown. The nonlin
ear behavior in stiffness is well represented at high energy le
with a consistent departure from the linear variation which wo
occur in the case of linear stiffness only.

Fig. 1 „a… Comparison of estimated energy values with the ex-
act values, „b… scatter plot of the estimates of the linear and
nonlinear stiffness parameters
DECEMBER 2000, Vol. 67 Õ 767
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Fig. 2 „a… Variation of the slope of the diffusion coefficient with Dt , „b… comparison between the estimated
and true variation of the diffusion coefficient with energy level, „c… comparison between the estimated varia-
tion and true variation of the drift coefficient with energy level, „d… comparison between the estimated and
true damping function variation with energy level, „e… estimated histogram of the energy, „f … comparison
between estimates of the input power spectrum and the true spectrum, „g… variation with frequency of the
standard deviation of the estimates of the input power spectrum, „h… variation of the frequency of free
undamped oscillation with energy level, „i… scatter plot for the estimates of the linear and nonlinear damping
parameters
f

a

r

led,
n
ht-
hey

ffi-
Stiffness parameter estimates are easily obtained by fitting
parametric form for the potential energy~see Eqs.~34! and ~35!!
to estimated energy values. Figure 1~b! shows a plot of pairs of
stiffness estimates~k̂1 versus k̂2! obtained from 100 blocks o
data, for a value of the input amplitude equal toK50.2 with K as
defined in Eq.~59!. The scatter in the estimates is relatively sm
but there is a clear negative correlation and a close to linear
pendency~see Section 5.4 for a further discussion of this featu!.
Averaging these estimates gives the estimatesk̂151.04, k̂2
50.95: thus the error is about five percent.
ol. 67, DECEMBER 2000
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Using the estimated stiffness coefficients the data was resca
as indicated in Eq.~47!, prior to implementation of the estimatio
method based on the drift and diffusion coefficients. It is straig
forward to rescale estimates obtained in this way so that t
relate to the original equation of motion~Eq. ~46!!.

To apply the proposed estimation technique the range ofDt
values for which the estimates of the drift and diffusion coe
cients, as obtained from Eqs.~38! and ~39!, are stable must be
established. The diffusion coefficient estimate,D̂(E), was found
to be the most sensitive to the choice ofDt. For small values of
Transactions of the ASME
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E, D̂(E) becomes proportional toE since the restoring moment i
nearly linear at low amplitudes: Thuss1→1 and Sy@v(E)#
→Sy(1) asE→0 ~see Eq.~47!!. Figure 2~a! shows the variation
of the slope,D̂(E)/E, at lowE values, withDt and compares this
with the theoretical value of 2pSy(1). As expected from the
theory there is a range ofDt values (5,Dt,20) over which the
slope is reasonably stable. On the basis of this result a value oDt
of 10 was chosen for calculating the drift and diffusion coefficie
estimates.

Figures 2~b!, 2~c! and 2~d! show, respectively, the variation o
the estimates of the diffusion and drift coefficients and damp
function, d(E), with energy level. These were obtained by av
aging 100 blocks of data. The corresponding histogram of
energy values is shown in Fig. 2~e!. The histogram indicates tha
E,1 for most of the data. There is considerable scatter in

Fig. 2 „Continued ….
Journal of Applied Mechanics
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estimates of the two coefficients but at low amplitudes, wh
there is most data, the agreement between the estimates an
theory is very good.

Figure 2~f ! shows estimates of the input power spectrum, d
rived from the estimates of the diffusion coefficient, according
Eq. ~40! ~again averaging the results from 100 blocks!. This
shows that the theory correctly accounts for the shape of the in
spectrum. Figure 2~g! shows the standard deviation of the spect
estimates, over the energy range of interest. The standard d
tion is low, at low frequencies but increases significantly at hig
frequencies. This is a reflection of the fact that as the freque
increases the energy level increases and the amount of data a
able to form the estimates decreases. Thus, a comparison o
energy histogram with a plot of the variation of the free oscillati
frequency,v(E), with E ~see Fig. 2~h!!, shows that reliable esti-
mates of the spectrum can only be achieved over a fairly limi
frequency range~say 1,v,1.4!.

It is noted that, for a single set of data, the segment of
excitation spectrum which can be estimated is limited to the
quency range corresponding to the energy range in the data.
ferent segments of the spectrum can, in principle, be estimate
varying the system stiffness since this changes the ene
frequency relationship.

Figure 2~i! shows a scatter diagram for estimates of the lin
and nonlinear damping parameters~Â and B̂! obtained from 100
blocks with an input amplitude ofK50.2. Here the estimate
were derived by the method given in Section 4.3: Thus, for e
block, Eq. ~55! was fitted to the estimated damping functio
Again, there is a negative correlation between these estimates
a significant degree of scatter around the ‘‘target point,’’ cor
sponding to the true damping parameter values~see Section 5.4
for a further discussion of this feature!. Averaging these estimate
gives the valuesÂ50.013 andB̂520.0085: These are signifi
cantly different from the true values.

In the next section it will be shown that, by using results f
two different amplitude levels, an individual estimates from
number of blocks, the accuracy of the parameter estimates ca
significantly improved.

5.4 Simulation Results: Two Different Amplitude Levels.
Earlier it has been shown that, for both the stiffness and damp
the linear parameter estimates are negatively correlated with
corresponding nonlinear parameter estimates.

In the case of damping this characteristic arises from the na
of the damping functiond(E), as given by Eq.~55!. Consider the
case of very weak excitation first, where the energy levels are v
low. In this case the linear term is dominant. The linear damp
parametera will then be accurately estimated whereas the non
ear parameterb will be poorly estimated, reflecting the fact tha
the nonlinear damping contribution is negligible. Thus, in t
scatter plot for the estimates, in thea, b plane~a horizontal!, the
estimates will cluster around a vertical straight line: This cor
sponds to a small dispersion ofâ and a large dispersion ofb̂. At
the other extreme, when there is a high level of excitation, w
correspondingly high energy levels, the nonlinear term is do
nant. The parameter estimates in thea, b plane will then scatter
about a horizontal straight line, corresponding to low dispersion
b̂ and high dispersion ofâ. The intercept of the lines obtained
linear regression applied to the estimates, for the two extre
cases, and can be expected to be close to the point correspo
to the true values ofa andb. The accuracy of the intercept poin
is directly related to the accuracy of the damping function e
mate.

For intermediate levels of excitation earlier results show t
damping estimates still cluster close to a linear variation~see Fig.
2~i!!: The slope depends on the amplitude of the input. The str
negative correlation effect can be explained by considering
difference between the exact damping function given by Eq.~55!
and an estimate given by
DECEMBER 2000, Vol. 67 Õ 769
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Fig. 3 „a… Three-dimensional plot of J d versus â and b̂ ; „b… contour plot of J d versus â and b̂ ; „c… scatter plots of the
estimates of the linear and nonlinear damping parameters, for two different excitation levels, showing the intersection of
the regression lines; „d… enlarged plot of part of Fig. 3 „b…; „e… scatter plots of the estimates of the linear and nonlinear
stiffness parameters, for two different excitation levels, showing the intersection of the regression lines
n
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d̂~Ei !5âs1
2Ei11.20b̂s1

2Ei
3/2 (60)

whereEi are discrete values ofE. A measure of the overall mea
square error between the estimated function and the true func
is as follows:

Jd5(
i

@d~E!2~Âs1
2Ei1B̂s1

2Ei
3/2!#2 (61)

where d(E) is given by Eq. ~55!. Figure 3~a! is a three-
0 Õ Vol. 67, DECEMBER 2000
tion

dimensional plot ofJd versus â and b̂, for the case wherea
50.01,b50.01, andEi50.1i ( i 51,2, . . .,10): The correspond-
ing contour plot is shown in Fig. 3~b! ~the latter also shows the
target point!. These figures show that the minimum ofJd is a long
and virtually flat valley. Thus, if the true damping function
known, the damping estimates will be at the bottom of the vall
i.e., they will tend to scatter along a straight line which pas
through the target point. In practice the true damping function
unknown and must be estimated from the data, in the man
Transactions of the ASME
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described in Section 4.2. Errors associated with damping func
estimation will be reflected in a small variation in the location
the valley and hence in a small additional scatter of the damp
estimates.

These considerations lead to the conclusion that a straight
fitted to the damping estimates in thea, b plane, using linear
regression, will pass close to the target point: The distance
tween this line and the target point is dependent on the accu
of the estimation of the damping function and will reduce if t
damping function estimation is improved. Thus if results are
tained attwo different excitation levels, thentwo straight linescan
be obtained, withdifferent slopes. Since both lines will pass clos
to the target point the intercept will be in the vicinity of this poin
thus the intercept can be expected to yield improved estimate
a andb. These statements apply equally well to the estimates oA
andB, since these are simply scaled versions ofa andb.

Figure 3~c! ~and Fig. 3~d!, which is an enlarged view! shows
damping parameter estimates,Â and B̂, obtained from the two
levels of excitationK50.1 andK50.2. As deduced from the
argument above, the intersection of the two linear regression li
shown in the figures, provides significantly improved damp
estimates;Â50.012 andB̂50.0095.

A similar improvement is possible in the case of stiffness e
mation, if results for two different excitation levels are availab
Again, as the results in Fig. 1~b! indicate, the estimates in th
k1 ,k2 plane scatter about a linear variation. This can be explai
by considering the difference between the exact potential en
function,V(x), and an estimate given by

V̂~xi !5 k̂1S x2

2 D1 k̂2S x4

4 D . (62)

The overall mean square errorJs , between the estimated functio
and the true function, may be defined in a similar way to
approach used to defineJd ~see Eq.~61!!. Numerical studies show
that a three-dimensional plot ofJs againstk1 and k2 has similar
characteristics to the corresponding plot forJd ; i.e., a long and
virtually flat valley.

Thus, as for damping estimation, one can expect that impro
estimation of the stiffness parameters is obtainable from the in
cept of two linear regression lines, fitted to estimates from a nu
ber of blocks, at two different excitation levels. Figure 3~e! shows
scatter diagrams for thek1 ,k2 estimates obtained from excitatio
at two different levels~K50.1 and 0.2!. In both cases 100 block
of data were processed. The intersection of the regression
yields the estimatesk̂151.01, k̂251.02: The error here is thu
very small and significantly smaller than that obtainable from
sults at a single input level.

6 Conclusions
The principal conclusions are summarized as follows:

1 For a lightly damped nonlinear oscillator, driven by a statio
ary stochastic process it is possible to obtain estimates the re
ing characteristic from measurements of the response pro
only, in the general case where the excitation is nonwhite.

2 This method can be combined with a technique based o
Markov model of the response, to enable estimates of the dam
Journal of Applied Mechanics
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function and the spectrum of the excitation to be genera
Again, only measurements of the response are required.

3 By combining results from tests at two different levels
excitation, the accuracy of estimation for both the stiffness a
damping parameters can be significantly improved.
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Vibrations of a Taut Cable With an
External Damper
A solution is presented of the problem of vibrations of a taut cable equipped w
concentrated viscous damper. The solution is expressed in terms of damped co
valued modes, leading to a transcendental equation for the complex eigenfrequenc
simple iterative solution of the frequency equation for all complex eigenfrequenci
proposed. The damping ratio of the vibration modes, determined from the argument
complex eigenfrequency, are typically determined to within one percent in two iterat
An accurate asymptotic approximation of the damping ratio of the lower modes is
tained. This formula permits explicit determination of the optimal location of the visc
damper, depending on its damping parameter.@S0021-8936~00!00404-9#
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1 Introduction

Cables constitute an efficient means of supporting static lo
and find increasing use as stay cables for, e.g., bridges and to
~@1#!. However, the slenderness of the cables makes them pro
vibrations, either induced by direct loads on the cable from w
or a combination of wind and rain, or via motion of the support
structure~Watson and Stafford@2#!. The cables are usually mad
of strands of high strength steel, and this leads to extremely
material damping, typically in the order of 0.001 of critic
Yamaguchi and Fujino@3#. Experiments and analysis of vibratin
cables indicate that the material damping can be largely assoc
with hysteretic energy loss due to stretching of the ca
~Yamaguchi and Jayawardena@4#!.

The light damping of the cable itself leads to a need to prov
external damping, and for this transverse dampers attached
distance of two to four percent of the span from one of the s
ports have been used in several cases~@5#!. The motion of the
damper is limited by its closeness to the support, and it is
importance to find the optimal combination of damper locat
and external damping magnitude. If the external damping is
large, the cable will vibrate as if it was supported at the location
the damper. Thus, in that case the effect of the damper wo
mainly be a slight increase in the vibration frequency, without a
appreciable damping effect on the vibrations.

The problem of the optimal damping constant of a visco
damper located close to one end of a taut cable was studie
Kovacs@6# who used a semi-empirical interpolation between
solutions of undamped vibrations of a cable without damper an
cable supported at the location of the damper. The results
gested that the maximum modal damping ratio that could be
tained by a concentrated viscous damper, would be about hal
relative distance of the damper from the support. This result
confirmed in a numerical study by Pacheco et al.@7#, who also
found an approximate value of the optimal external damping c
stant for the lower modes of vibration, when the damper is cl
to a support. Their method of analysis consisted in represen
the displacement in terms of a sine function expansion, and
concentrated action of the damper made the use of 200–300 t
necessary for good accuracy. A later analysis by Baker et al@8#
aiming at active control of the cable included the static deflect

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, A
gust 12, 1999; final revision, May 2, 2000. Associate Technical Editor: A. A. Fe
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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in the representation of the transverse motion, and thereby
duced the necessary number of terms considerably.

In the present paper the problem of damping of a vibrat
string by a concentrated viscous damper is formulated and so
by use of complex-valued modes. The problem formulation
sults in a fairly simple transcendental equation for the comp
eigenfrequencies, and the modal damping ratios are identified
rectly from the imaginary parts of the eigenfrequencies. As
turns out an explicit asymptotic result can be obtained, yieldin
simple analytical formula for the numerical results of Pache
et al. @7#. Furthermore, a simple iterative scheme is derived t
yields accurate complex eigenfrequencies within two iteratio
also for higher modes and general location of the damper.
complex modes are illustrated, and it is found that optimal ex
nal damping corresponds to a phase lag of 1/4p of the combined
cable and damper force acting on the long part of the cable at
location of the damper.

The equation of motion of the taut string is similar to that
axial vibrations of a beam. This problem has been studied by
of complex modes for the special case of a damper at an other
free end~@9,10#!. However, in that problem the boundary cond
tion is fairly simple, and the main issue is the representation
forced vibrations in terms of the complex modes. Analogous be
problems with viscous dampers at the ends have been treate
Oliveto et al.@11# and Yang and Wu@12#. It is clear from these
analyses that the response can be represented in terms of the
plex modes by an extension of classical modal analysis, in wh
the inertial term is represented as the time derivative of a sepa
momentum representation, much in the spirit of Hamiltonian m
chanics. The general conclusion of relevance for the present w
is that the damping ratio, determined from the complex eig
value, plays the same role as in classical modal analysis.

2 Problem Formulation
The cable and the concentrated viscous damper are show

Fig. 1. The length of the cable isl, and the damper is located at th
distancea from the left end. The cable force isT, and the mass pe
unit length ism. The coefficient of the concentrated damper
denotedc, and the cable itself is assumed undamped. In the
lowing it is convenient to introduce the complementary leng
a85 l 2a and the complementary coordinatex85 l 2x.

Linear oscillations of the cable under the assumption of vir
ally unchanged cable force are described by the partial differen
equation

T
]2v
]x2 2m

]2v
]t2 5c

]v
]t

d~x2a! (1)

wherev(x,t) is the transverse displacement, andd(x2a) is the
delta function, specifying the location of the damper force ax
5a.
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The partial differential Eq.~1! is to be solved with the boundar
conditions

v~0,t !50, v~ l ,t !50 (2)

specifying fixed ends. At the location of the damper there i
discontinuity in the inclination of the cable, providing a transve
force matching the force in the damper. This relation has the fo

TS ]v
]xU

a1

2
]v
]xU

a2
D 5c

]v
]t

. (3)

It is seen that this equation implies a linear relation between
displacement space and time derivatives atx5a, and this cou-
pling will lead to complex mode shapes and frequencies of f
vibrations.

The transverse displacement of free damped vibrations of
string can be expressed in the form

v~x,t !5Re@ ṽ~x!exp~ ivt !# (4)

where v is a complex natural eigenfrequency, andṽ(x) is the
corresponding complex mode shape. The complex mode s
ṽ(x) satisfies the ordinary differential equation

d2ṽ
dx2 1b2ṽ50, H0,x,a

0,x8,a8
(5)

where the wave numberb has been introduced as

b5vAm

T
. (6)

The differential Eq.~5! is homogeneous in each of the tw
intervals between the ends and the damper. The solution is
veniently expressed in the form

ṽ~x!5H A sin~bx!, 0<x<a

A8 sin~bx8!, 0<x8<a8
(7)

whereA and A8 are arbitrary constants. Continuity of the sha
function atx5a requires

A sin~ba!5A8 sin~ba8!5 ṽa (8)

whereṽa5 ṽ(a). Hereby the solution~7! takes the form

ṽ~x!5H ṽa

sin~bx!

sin~ba!
, 0<x<a

ṽa

sin~bx8!

sin~ba8!
, 0<x8<a8.

(9)

The amplitudeṽa is undetermined in a free vibration.
Substitution of the mode shape representation~9! into the force

balance relation~3! provides an equation for determination of th
complex eigenfrequencies.

cot~ba!1cot~ba8!52 i
c

ATm
(10)

The solution of this frequency equation is treated in the follow
section.

Fig. 1 Taut cable with external viscous damper
Journal of Applied Mechanics
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3 Complex Eigenfrequencies
The wave number solutions to the frequency Eq.~10! are de-

noted bn , n51,2, . . . , and thecorresponding eigenfrequencie
vn . The eigenfrequencies of the damped modes are comp
with the imaginary part representing the attenuation due to da
ing. The magnitude of the imaginary part is represented via
modal damping ratiozn , obtained from the representation

vn5uvnu~A12zn
21 i zn!. (11)

The modulusuvnu describes the magnitude of the angular fr
quency, and for small damping ratio the frequency of the osci
tory part of the solution.

The coefficientc of the concentrated damper enters the solut
via the nondimensional damping coefficient

h5
c

ATm
(12)

where the damping is normalized by the square root of the ca
force and the cable mass per unit length. This is similar to
normalization with respect to stiffness and mass in an oscilla
However, in the present continuous system, the effectivenes
the damper depends on the location of the damper.

In terms of the nondimensional damping coefficienth the fre-
quency Eq.~10! is

cot~ba!1cot~ba8!52 ih. (13)

In this equation cot(ba8) is expressed in terms of cot(bl) and
cot(ba) by use of the trigonometric relation

cot~ba8!5cot~b l 2ba!5
11cot~b l !cot~ba!

cot~ba!2cot~b l !
. (14)

This gives the equation

11cot2~ba!

cot~b l !2cot~ba!
5 ih. (15)

In this equation the term tan(bl) is isolated on the left side,

tan~b l !5
ih sin2~ba!

11 ih cos~ba!sin~ba!
. (16)

This form of the frequency equation is suitable for solution, eith
in asymptotic form or numerically by iteration.

3.1 Asymptotic Solution. It is convenient first to obtain an
asymptotic solution of the frequency Eq.~16!, valid for a/ l !1.
The asymptotic solution identifies suitable parameters and il
trates the main features of the general solution.

The asymptotic solution is obtained by considering a small p
turbation on the solution without damping. In the absence
damping the wave numbers of the simply supported string ar

bn
05n

p

l
, n51,2, . . . . (17)

Assuming the wave numbersbn of the damped problem to be
small perturbations frombn

0, the tangent can be approximated b

tan~bnl !.bnl 2np. (18)

The assumptiona/ l !1 leads to the following representations

sin~bna!.np
a

l
, cos~bna!sin~bna!5

1

2
sin~2bna!.np

a

l
.

(19)

These representations are useful forbna&1/4p, although perhaps
not very accurate around the upper limit. With the estimatebnl
.np this corresponds tona/ l &1/4.
DECEMBER 2000, Vol. 67 Õ 773
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Introduction of the asymptotic representations~18! and ~19!
into the frequency Eq.~16! leads to the following explicit
asymptotic formula for the wave numberbn :

bnl .np1
ih~npa/ l !2

11 ih~npa/ l !
. (20)

The imaginary part is evaluated from the last term as

Im@bnl #.
h~npa/ l !2

11h2~npa/ l !2 (21)

while the real part is asymptotically equal tonp. Thus an
asymptotic approximation of the damping ratio is obtained as

zn.
Im@bnl #

np
.

~hnpa/ l !

11~hnpa/ l !2

a

l
. (22)

When the factora/ l is transferred to the left side of the equatio
the result takes the form

zn

a/ l
.

~hnpa/ l !

11~hnpa/ l !2 . (23)

In this form the relation gives the modal damping in terms of
parameterzn /(a/ l ) as a simple rational function of the paramet
hnpa/ l , combining the parameterh of the external damper, the
mode numbern and the locationa/ l of the damper. These two
parameters were identified from numerical computations usin
large number of realundampedmode-shapes by Pacheco et
@7#.

The asymptotic relation~23! is shown in Fig. 2. It is seen tha
initially the modal damping increases with increasing exter
dampingh, it then reaches a maximum and decreases upon fur
increase ofh. For a given locationa/ l of the damper the optima
value of the external damping coefficienth is obtained from the
condition

Fig. 2 The asymptotic modal damping relation „23…
774 Õ Vol. 67, DECEMBER 2000
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]zn

]h U
a

50 (24)

leading to the value

hoptpna/ l 51 or hopt5
1

pna/ l
. (25)

The asymptotic estimate of the maximum damping follows
from substitution of this value into~22!, leading to

zn,opt

a/ l
.0.5 or zn,opt.

a

2l
. (26)

The solution is asymptotically valid for smallna/ l . By ~25! this
implies large values of the optimal external damping paramete
e.g., by the previous estimatena/ l &1/4 andhopt*4/p.

The asymptotic relation~22! and the optimum values~25! and
~26! constitute an analytical solution of the ‘‘universal curve’’
determined from a numerical solution of the cable problem b
Pacheco et al.@7#. In their paper the external damping was nor-
malized via the first undamped eigenfrequencyv15b1

0AT/m
5(p/ l )AT/m using the parameterca/(v1ml2)5h/p. According
to ~25! the optimal value of this parameter isp22.0.10 as also
found in the numerical study of Pacheco et al.@7#. The approxi-
mate procedure of Kovacs@6# leads to the estimateca/(v1ml2)
.1/(2p)50.16 for the optimal external damping parameter, thu
overestimating its value by approximately 60 percent.

3.2 Numerical Solution by Iteration. The form~16! of the
frequency equation is also suitable for direct iterative solution
substituting current estimatebn

j on the right side and evaluating a
new estimatebn

j 11 by inversion of the tangent function. Starting
from the undamped wave numbersbn

0 from ~17!, the iterative
scheme is given by

bn
j 11l 5np1arctanS ih sin2~bn

j a!

11 ih cos~bn
j a!sin~bn

j a!
D , j 50,1, . . . .

(27)

Results are presented in Figs. 3~a! and 3~b! for a/ l 50.02 and
a/ l 50.05, respectively. The fully drawn graph corresponds to th
asymptotic relation~23!. It is seen that the deviations from the
asymptotic curve~23! are negligible fora/ l 50.02, while fora/ l
50.05 the optimal damping increases slightly and corresponds
a value of the external damping parameterh slightly larger than
(pna/ l )21.

The iterative scheme~27! converges rapidly as illustrated in
Figs. 4~a! and 4~b!. The figures show the erroruzn

j 2znu l /a at
hna/ l 51/p for the cases of Figs. 3~a! and 3~b!, respectively.
Index j 50 corresponds to the undamped wave number~17!, for
which the damping ratio vanishes. Thus, the error forj 50 is
Fig. 3 Damping ratio of the first five modes; „a… aÕ lÄ0.02, „b… aÕ lÄ0.05
Transactions of the ASME
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Fig. 4 Iteration convergence of first five modes; „a… aÕ lÄ0.02, „b… aÕ lÄ0.05.
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equal to the final damping ratio. Convergence is slightly faster
a/ l 50.02 than fora/ l 50.05, but in both cases the error is le
than one percent after two iterations.

The first iteratebn
1 from ~27! does not provide a systemat

improvement over the asymptotic result~20!. However, the damp-
ing ratio determined frombn

1 correctly represents thelocation of
the maximal modal damping. Thus, a good approximation of
optimal value of the parameterhna/ l can be determined from th
damping ratio frombn

1 . The optimal value is estimated from th
condition

d Im@bn
1l #

dh
5ImFd~bn

1l !

dh G50. (28)

This condition leads to a replacement of the asymptotic result~25!
with

hopt sin~pna/ l !51 or hopt5
1

sin~pna/ l !
. (29)

Fig. 5 Optimal modal damping for aÕ lÄ0.05. Curves from Fig.
3„b… and estimates from „29….
hanics
for
s

c

the

e

This result based on the first iterate contains the asymptotic re
~25! as the limit fora/ l !1. For finite values ofa/ l it correctly
represents an increase in the optimal external damping param
hopt . This is illustrated in Fig. 5, showing the central part of th
curves from Fig. 3~b! for a/ l 50.05 together with the maximum
values estimated fromhopt from ~29!. The estimate~29! of the
optimal external damping parameterhopt is seen to be quite accu
rate. However, the modal damping obtained by using the opti
external damping must be calculated by the iteration proced
using at least two iterations.

4 Complex Mode Shapes
The complex mode shapes are given by~9! in terms of the

displacement amplitudeṽa at x5a and the complex wave numbe
b. When the displacementv(a,t)5Re@ṽa exp(ivt)# attains its
maximum value, the velocity]v(a,t)/]t5Re@ivṽa exp(ivt)# van-
ishes. Thus, at this instant in time there is no damping force
the tangent changes continuously acrossx5a. Conversely, a
quarter period later the displacementv(a,t) vanishes, while the
velocity ]v(a,t)/]t reaches its numerically largest value. Figu
6~a! illustrates the development of the mode shape in this qua
period, starting with a smooth curve and positive displaceme
and gradually developing a slope discontinuity atx5a, reaching
its maximum value a quarter period later.

The slope discontinuity at the location of the damper follo
from multiplication of ~13! by b ṽa ,

S dṽ~x!

dx U
a1

2
dṽ~x!

dx U
a2

D 52b~cot~ba!1cot~ba8!!ṽa5 ibh ṽa .

(30)

When the optimal external damping is estimated from~29!, and
b is approximated by its undamped value~17!, the maximum
value of the slope discontinuity, attained at the end of the qua
period, is
Fig. 6 First complex mode aÕ lÄ0.1 and hÄhopt ; „a… quarter period from max
v „a…, „b… half period from max v„1Õ2a8….
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(31)

When the damper is close to the end of the cable, the pa
cable between the damper and the closest support remain
proximately straight, and thus the slope discontinuity~31! at the
end of the quarter period is approximately equal to the slope a
support at the beginning of the quarter period, as clearly see
Fig. 6~a!.

At the beginning and the end of the quarter period the m
shape looks quite similar, but with a length that is reduced frol
to l 2a. However, the maximum displacement within the ma
span is attained before the displacement of the damperv(a,t)
reaches its maximum. Figure 6~b! shows the development of th
mode shape over a half period, starting at the time of the m
mum displacement atx851/2a8.

The asymptotic optimal valuehopt for a damper located close t
a support can be given an interpretation in terms of the transv
forces on the cable at the location of the damper. The part of
cable extending from the damper to the remote support exp
ences two transverse force components at the location of
damper: a transverse componentFT(t) of the cable tensionT due
to the inclination of the part of the cable between the damper
the closest support, and the forceFc(t) from the damper. In the
lower modes of vibration the part of the cable between the dam
and the closest support is approximately straight, and thusFT
.Tṽa /a. The force from the damperFc5 ivncṽa is 1/2p out of
phase. The ratio between the magnitude of these two force c
ponents is

uFcu
uFTu

5
vnca

T
.pn

a

l
h (32)

where the approximationvn.(np/ l )AT/m has been introduced
When the asymptotic optimal damping parameterhopt is inserted
from ~25!, optimal damping is seen to correspond touFcu.uFTu.
Thus, at optimal damping the two force components are eq
and the force acting on the longer part of the cable lags 1p
behind the displacement.

5 Conclusions
The damping of a taut cable by an isolated viscous damper

been analyzed in terms of complex-valued modes. An asymp
solution has been obtained for the damping ratio of the low
776 Õ Vol. 67, DECEMBER 2000
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modes, valid for damper location close to one support. T
asymptotic solution defines the ‘‘natural’’ damping parameters
zn /(a/ l ) for modal damping andn(a/ l )Ac/(Tm) for the external
damping, and identifies maximal modal damping to bezn

.1/2a/ l , attained forcopt.ATm/(pna/ l ). For a/ l *0.05 differ-
ences from the asymptotic results become noticeable, an
slightly larger external damping becomes optimal. An accur
approximation has been obtained for the optimal external da
ing, reflecting the increase with increasingna/ l , and a general
iterative procedure has been given for the modal damping. T
cally one or two iterations yield the modal damping ratio within
relative error of less than one percent.
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Initial Post-Buckling and Growth
of a Circular Delamination
Bridged by Nonlinear Fibers
Axisymmetric buckling, initial post-buckling and growth of a circular delaminati
bridged by nonlinear fibers in three-dimensional composites are studied by a perturb
method. The through-thickness fibers are assumed to provide nonlinear restoring tra
resisting the deflection of the delaminated layer. A closed-form solution for the ce
deflection of the delamination due to on applied compressive stress during initial
buckling is obtained. In addition, some simple formulas for calculating the strain en
release rate and the mixed mode stress intensity ratio (i.e., Mode II versus Mode I)
delamination crack tip are also established. Some interesting conclusions arising dir
from the perturbation solutions are drawn. These include: (1) initial post-buckling beh
ior of a circular delamination is unstable for a softening bridging model; this may re
in initial delamination growth for some materials with lower fracture toughness when
delamination buckles rather than post-buckles. However, stable growth is obtained
hardening bridging model; (2) with an increase of the nonlinear fiber bridging param
~b̄!, the residual stiffness of a three-dimensional composite structure with a circ
delamination increases gradually; (3) bridging force changes the catastrophic natu
the delamination growth and increases the stability of the delamination. The range
the dynamic effect of the unstable delamination growth diminish or disappear as
bridging parameters increase; (4) for the bridged delamination, the higher the mate
fracture toughness, the higher the stability of the delamination growth, and the sm
the range and dynamic effect of its unstable growth.@S0021-8936~00!03203-7#
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1 Introduction
Owing to the imperfection of production techniques and ac

dental impact by foreign objects, composite structures will ine
tably develop interface cracks and delaminations, which will s
ously degrade the structural integrity and thus the compres
stiffness and buckling strength. In addition, delaminations w
degrade other structural properties of composite structures,
as energy-absorbing ability~@1#!.

Researchers began to pay attention to the buckling and gro
of delaminations in composites structures loaded by compres
forces in the early 1980s~see@2#!. Much experimental and theo
retical research has been conducted on this subject~e.g.,@3–12#!.
It was found that post-buckling produces delamination grow
thereby rendering composites of little practical use. So,
delamination problem can be considered a plate post-buck
problem coupled with interfacial fracture.

Presently, three-dimensional composites are used more
more widely owing to the development of better material prod
tion technique and needs of practical engineering. Since the la
fibers acting on the delamination can increase the residual stre
of the structure during post-buckling, it is important, from the
retical and practical points of view, to discuss delamination bu
ling and growth in the presence of bridging by fibers. In rec
years there have been some investigations on this topic~a partial
list includes investigations by Shu and Mai@13#, Cox @14#, Cox
and Marshall@15#, Li et al. @16,17#, Hu et al.@18#, and Massabo
and Cox @19#!. The buckling problem of a one-dimension

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
5, 1999; final revision, Apr. 7, 2000. Associate Technical Editor: M.-J. Pinde
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
ci-
vi-
ri-
ive
ill
uch

wth
sive

th,
the
ling

and
c-
eral
ngth
o-
k-
nt

l

delamination bridged by fibers was discussed by Cox@14#. Bridg-
ing fibers were assumed to produce a continuously distribu
traction which was proportional to the delamination deflecti
when the delamination buckles. In fact, this is a linear bridg
model. Based on the linear theory of a beam on elastic founda
some key features of the delamination buckling were discove
by Cox @14#. In our recent paper~@20#!, the energy variational
method was used to solve the problem of a circular delamina
bridged by linear fibers. Under the boundary condition that
ends of the delaminated layer are clamped and with deflect

n.
ra.
essor
on,
li-

Fig. 1 A circular thin-film delamination with fiber bridging
000 by ASME DECEMBER 2000, Vol. 67 Õ 777
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permitted in one direction only, there exists a characteristic len
a0 for buckling: if the radius,a, of a circular delamination crack
exceedsa0 , then, when buckling occurs, it will be limited to th
subregionr ,a0 , and will usually not span the whole delamin
tion; if a does not exceeda0 , the bucking will span the whole
region (r<a) ~see Appendix A!. We further discussed the prob
lem of the post-buckling and growth of a circular delaminati
bridged by linear fibers in Li et al.@16,17,21# and Hu et al.@18#.
In the present paper, we will study the interesting problem
buckling, post-buckling, and growth of circular delamination w
a small radius (a<a0) bridged by nonlinear fibers. For math
ematical convenience, the composite structure is assumed t
macroscopically isotropic in ther 2u plane, Fig. 1~e.g., quasi-
isotropic laminates!. The previous work on the linear bridgin
model is a special case of this paper.
e

778 Õ Vol. 67, DECEMBER 2000
gth

-

-
n

of
th
-
o be

2 Governing Equations of Post-Buckling for a Circu-
lar Delamination Bridged by Nonlinear Fibers

A circular delamination subjected to a uniformly distribute
compressionP along its edge is shown in Fig. 1. Let the deflectio
of the delamination during axisymmetric buckling bew(r ). The
delamination is restrained by lateral fibers which produce late
restoring tractionq(r ) when buckling occurs. For nonlinear fiber
we assume

q~r !5aw~r !1b@w~r !#2.0 (1)

wherea, b denote, respectively, linear and nonlinear parame
of the lateral restoring traction. Substituting Eq.~1! into von Kar-
man’s nonlinear plate equations~@22#! leads to
D
1

r

d

dr H r
d

dr F1

r

d

dr S r
dw

dr D G J 1
1

r

d

dr S rP
dw

dr D1aw1bw250

r 2
d2P

dr2 13r
dP

dr
1

Eh

2 S dw

dr D 2

50
J . (2)
f

e
re-
on-
ina-

lin-
The boundary conditions are

w~r !ur 5a50, (3a)

dw

dr U
r 50,a

50, (3b)

dP

dr U
r 50

50. (3c)

where P(.0) denotes radial pressure acting on the edge,D
5Eh3/@12(12m2)# denotes the bending stiffness of the delam
nated plate,E andm denote, respectively, Young’s modulus an
Poisson’s ratio of the material, andh denotes the thickness of th
delamination.

3 Perturbation Solution
Letting

j5
r

a
, p~j!5

a2

D
P~r !, w̄~j!5

A6~12m2!

h
w~r !,

(4)

ā5
a4

D
a, b̄5

a4h

DA6~12m2!
b.

Eqs.~2! and~3! assume the following nondimensionalized form

j21$j@j21~jw̄8!8#8%81j21~jpw̄8!81āw̄1b̄w̄250
j21~j3p8!82w̄8250 J (5)

w̄~1!50, (6a)

w̄8~0!5w̄8~1!50, (6b)

p8~0!50. (6c)

where the prime indicates differentiation with respect toj.
ChoosingW̄m ~the deflection of the delamination atr 50! as a

perturbation parameter,w̄(j) andp(j) are expanded into series o
W̄m as follows:

w̄~j!5(
i 51

n

w̄i~j!W̄m
i , (7a)
i-
d

s:

f

p~j!5(
i 50

n

pi~j!W̄m
i . (7b)

Substituting~7! into ~5! and ~6! and setting the coefficients o
each order ofW̄m to zero yields, after some manipulation,

w̄i
~4!1

2

j
w̄i

~3!1S p02
1

j2D w̄i91S p0

j
1

1

j3D w̄i81āw̄i

5 f i~j! ~ i 51,2,3, . . . !, (8a)

j21~j3pi8!85(
n51

i

w̄n8w̄i 2n8 , (8b)

j2p0950 ~ i 51,2,3, . . . !. (8c)

w̄i~1!50, (9a)

w̄i8~0!5w̄i8~1!50, (9b)

pi 218 ~0!50 ~ i 51,2,3, . . . !. (9c)

where

f i~j!5(
n51

i F ~pnw̄i 2n8 !81
1

j
pnw̄i 2n8 1b̄w̄nw̄i 2nG

( i 51,2,3, . . . ) (10)

and noting thatw̄050 in ~8b! and ~10!. Letting j50, ~7a!
becomes

W̄m5w̄~0!5w̄1~0!W̄m1w̄2~0!W̄m
2 1w̄3~0!W̄m

3 1 . . . .

It follows from the above expression that

w̄1~0!51, (11a)

w̄i~0!50 ~ i 52,3, . . .!. (11b)

Obviously, Eqs.~8!–~11! with i 51 represent an eigenvalu
problem of a linear homogeneous differential equation cor
sponding to the buckling problem of the delamination under c
sideration. It is the same as the buckling problem of a delam
tion bridged by linear fibers@q(r )5aw(r )# since the equilibrium
equations and the boundary conditions do not include the non
Transactions of the ASME
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ear factorb̄. The buckling load of the delamination bridged b
linear fibers has been obtained as a series ofā ~@16,17#!

p0514.682~110.009278ā23.542331026ā2

21.0183631028ā31 . . . ! (12a)

w̄1~j!5(
i 50

`

w̄1i~j!ā i (12b)

wherew̄1i(j) ( i 50,1,2,3, . . . ) aregiven in Appendix A.
For a bridging fiber with a quadratic hardening law, the buc

ling load of the delamination can be obtained from the bend
theory for circular plates

p0514.682, (13a)

w̄1~j!50.287110.7129J0~3.8317j!. (13b)

whereJ0( ) denotes the Bessel function of the zero order.
The second-order perturbation Eqs.~8!–~11! are

w̄2
~4!1

2

j
w̄2

~3!1S p02
1

j2D w̄291S p0

j
1

1

j3D w̄281āw̄2

5p18w̄181p1S w̄191
1

j
w̄18D1b̄w̄1

2 (14a)

j21~j3p18!850 (14b)

w̄2~1!50, (15a)

w̄28~0!5w̄28~1!50, (15b)

p18~0!50. (15c)

The general solution of Eq.~14b! is p1(j)5c1j221c2 . Since
p1(j) should be finite atj50, one finds c150 and p1(j)
5const.

In addition, the solution of the homogeneous equation co
sponding to~14a! is

w% 2~j!5Aw̄1~j! ~AÞ0!. (16)

The necessary and sufficient condition for the existence of
particular solution is that the inner product off 2(j) in ~10! and
w% 1(j) in ~16! should be zero~@23#!, that is

^ f 2~j!,w% 1~j!&5E
0

1

f 2~j!•w% 1~j!•2pjdj50.

From the above one finds

p15
b̄*0

1@w̄1~j!#3jdj

*0
1@w̄18~j!#2jdj

. (17)

After having found the value ofp1 , the approximate solution o
Eq. ~14a! can be obtained by the weighted residual method.
the basis of the boundary conditions~15a,b!, w̄2(j) possesses the
following form:

w̄2~j!5Bj2~12j!2. (18)

Applying weighted integration to~14a! results in

B5
6303*0

1j2~12j!2
• f 2~j!dj

39929p01ā
. (19)

The third-order perturbation equations of~8!–~11! are

w̄3
~4!1

2

j
w̄3

~3!1S p02
1

j2D w̄391S p0

j
1

1

j3D w̄381āw̄3

5p1S w̄291
1

j
w̄28D1p2S w̄191

1

j
w̄18D1p28w̄1812b̄w̄1w̄2

(20a)
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j21@j3p28~j!#85@w̄18~j!#2 (20b)

w̄3~1!50, (21a)

w̄38~0!5w̄38~1!50, (21b)

p28~0!50. (21c)

The general solution of Eq.~20b! is

p2~j!5S~j!1A1j221A0 (22)

where

S~j!5E
0

jH x1
23E

0

x1

x@w̄18~x!#2dxJ dx1 . (23)

Similarly, since the value ofp2(j) should be finite atj50, the
constantA1 in ~22! equals zero. From the existence condition f
the particular solution of Eq.~20a!, A0 can be determined as

^ f 3~j!,w% 1~j!&5E
0

1

f 3~j!•w% 1~j!•2pjdj50

A05
*0

1w̄1•$p1~jw̄28!81~jSw̄18!812b̄jw̄1w̄2%dj

*0
1w̄18

2jdj
. (24)

Finally, the deflectionw̄3(j) of the third-order perturbation can
be obtained using~20a! and~21a,b! in the same manner as abov

In view of the fast decaying nature of the expansions~7a,b!, the
higher order perturbation solutions have little effect on the init
post-buckling of the delamination. Thus, the second-order exp
sion for the deflectionw̄(j) and the third-order expression for th
membrane forcep(j)

w̄~j!5w̄1~j!W̄m1w̄2~j!W̄m
2 , (25a)

p~j!5p01p1W̄m1p2~j!W̄m
2 , (25b)

are sufficiently accurate for practical use~compared with the
higher order solutions, the results from three terms ofp(j) and
two terms ofw̄(j) show good convergence within the limits o
W̄m,3 or s,1.5scr!. w̄1(j) and w̄2(j) are given, respectively
by ~13! and ~18!; p0 , p1 , and p2(j) are given, respectively, by
~12!, ~17!, and~22!.

According to the continuity condition for radial displaceme
between the delamination and the substrate at the tip of
delamination (r 5a), the uniform radial stress acting on th
delamination along its boundary can be obtained:

s5
D

a2h Fp8~1!

12m
1p~1!G . (26)

Letting W̄m50, the critical buckling stress for the delaminatio
can be derived from formulas~25b! and ~26! as

scr5
P

h
5

D

a2h
p0 . (27)

Therefore, the membrane force and bending moment exerte
the boundary of the delamination can be written as

P* 5sh2P~a!5sh2
D

a2 p~1!5
D

a2~12m!
p8~1!, (28a)

M* 5DFd2w

dr2 1m
1

r

dw

dr GU
r 5a

5
Dh

a2A6~12m2!
w̄9~1!.

(28b)

4 Properties of Delamination Growth
The mode I and II stress intensity factors for a delaminat

under the boundary loadsP* andM* are, respectively,
DECEMBER 2000, Vol. 67 Õ 779
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K I5
1

A2
@P* h21/2 cosv22A3M* h23/2 sinv#, (29)

K II5
1

A2
@P* h21/2 sinv12A3M* h23/2 cosv#. (30)

wherev552.1 deg~@6,24#!. Substituting~28! into ~29! and ~30!
leads to

K I5
D

a2Ah
F p8~1!

A2~12m!
cosv2

w̄9~1!

A12m2
sinvG , (31)

K II5
D

a2Ah
F p8~1!

A2~12m!
sinv1

w̄9~1!

A12m2
cosvG . (32)

The mixed-mode stress intensity ratio and the local energy rel
rate at the crack tip are, respectively,

c5tan21FK II

K I
G5tan21FA 11m

2~12m!
p8~1!sinv1w̄9~1!cosv

A 11m

2~12m!
p8~1!cosv2w̄9~1!sinv

G
(33)

G05
12m2

E
~K I

21K II
2 !5

D2

Eha4 Ḡ0 (34)

where~m51/3!

Ḡ05
Eha4

D2 G05@p8~1!#21@w̄9~1!#2. (35)

The global energy release rate, for delamination growth un
external stresss is ~@24#!

G5G02DGb or Ḡ5Ḡ02DḠb (36)

where

DḠb5
Eha4

D2 DGb52E
0

1S āw̄~j!21
2

3
b̄w̄~j!3D jdj (37)

is the counteracting part of the energy release rate by the brid
force ~see Appendix B!.

Obviously, it follows from ~18!, ~19!, ~10!, and ~17! that
w̄2(j)5p1(j)50 whena5b50 ~in the absence of the bridge!.
Substituting this result into~25! and~33!, one can get the mixed
mode stress intensity ratio in the form

c5tan21FK II

K I
G5tan21F0.14356W̄m sinv1cosv

0.14356W̄m cosv2sinv
G . (38)

The result is the same as that obtained by Hutchinson and
@24#.

5 Results and Analysis
Using the above results obtained by perturbation analysis,

proceed to discuss buckling, initial post-buckling, and grow
properties of a delamination bridged by nonlinear fibers.

The dependence of the central deflectionW̄m of the delamina-
tion on the uniform stresss is shown in Fig. 2 for the hardening
type bridging model (b̄515) with different values of the linea
parameterā of the bridging force. This figure shows that thes
2W̄m curves form a set of nearly parallel, equidistant lines wh
ā increases by equally spaced increments. This demonstrates
the critical stressscr , and the initial post-buckling stresss are
proportional to the linear parameterā of the bridging force.

Figures 3–5 present a set of curves describing the depend
of the central deflectionW̄m , the energy release rateG, and the
780 Õ Vol. 67, DECEMBER 2000
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mixed-mode stress intensity ratioc on the external stresss for
ā550 and various values ofb̄. In Fig. 3, the slope of the curve
W̄m2s/scr at the origin has the same sign asb̄, and decreases
with increasingb̄. In the case ofb̄.0, W̄m increases with in-
creasings, which indicates that the equilibrium state of th
delamination during initial post-buckling is stable; andW̄m de-
creases with increasingb̄ whens5const.~no change!, which in-
dicates that the residual strength of the composite increases
increasingb̄. However, whenb̄,0, there exists an unstable re
gion during initial post-buckling of the delamination, whic
means that the external stresss maintaining the equilibrium of the
delamination is smaller than the critical stressscr after buckling.
In fact, a sudden change~jump! of the central deflectionW̄m oc-
curs at the instant of buckling. Figure 3 shows thatW̄m will
change suddenly from 0 to 1.2 forb̄5220 at the instant of
delamination buckling if the critical stressscr is maintained. For
the linearly bridged delamination (b̄50), the slope of theW̄m
2s/scr curve at the origin is infinite~see the dashed line in Fig
3!. Hence, the equilibrium of the linearly bridged delamination
the instant of buckling moment forms a boundary between sta
and unstable states. Also forb̄5220, the global energy releas
rate changes suddenly from 0 to 5.2~Fig. 4~a!!, the local energy
release rate changes from 0 to 14~Fig. 4~b!!, and the mixed mode
stress intensity ratio changes from238 deg to251.5 deg~Fig. 5!.
~This means that the state ofuK1u.uK2u for the mixed crack con-
verts suddenly to that ofuK1u,uK2u.! This again illustrates the
instability of delamination growth for the softening-type bridgin
model at the instant of buckling. Figure 4 shows that for t
hardening-type bridging model, the energy release rateG de-
creases with increasing nonlinear parameterb̄ for a given stresss,
especially at the beginning of post-buckling. Figure 5 indica
that the ratioc is independent of the nonlinear parameterb̄ at the
instant of buckling for a given linear parameterā ~ā550,

Fig. 2 Curves of sÀW̄m for the hardening-type bridge model
with different values of ā

Fig. 3 Curves of W̄mÀsÕscr for āÄ50 and different values
of b̄
Transactions of the ASME
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c'238 deg!. In addition, the dominance of mode II for th
mixed-mode crack growth weakens with increasing nonlinear
rameterb̄ for a given stresss.

Figure 6 presents the curves ofW̄m2s/scr for the delamina-
tion bridged by fibers of a quadratically hardening type~ā50,
b̄>0! during initial post-buckling. The slope of theW̄m2s/scr

curve at the origin decreases gradually from infinity asb̄ in-
creases gradually from zero. For a givens, the central deflection
of the delamination decreases gradually with increasingb̄, which
indicates that residual stiffness of the composite increases. Fi
7 shows the dependence of the energy release rateG of the
delamination bridged by fibers with quadratically hardening ons
during the initial post-buckling, illustrating thatG decreases
gradually with increasingb̄. Figure 8 presents the curve ofc
2s/scr , which shows that the potential for mode II delaminati
growth decreases with increasingb̄.

In the above analysis, the deformation of the delamination d
ing the initial post-buckling stage was determined for a giv
radiusa and different bridging parameters,a andb. The effect of
changing fracture parameters due to applied stress field at

Fig. 4 Curves of GÀsÕscr for different values of b̄. „a… Global
energy release rate, „b… local energy release rate.

Fig. 5 Curves of cÀsÕscr for different values of b̄
Journal of Applied Mechanics
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delamination tip was also elucidated. To further investigate
characteristics of delamination propagation, the following va
ables are defined:

â5
a

h
, â5

ah4

D
, b̂5

bh5

DA6~12m2!
, Ĝ5

Eh5

D2 G.

(39)

Using the results obtained in Sections 3 and 4, the change in
energy release rate and the mixed-mode stress intensity ratio a
crack tip can be determined for different delamination radii un
constant stress field~Figs. 9–14!.

Fixing the applied stresss51.2scr during the delamination
post-buckling stage, the curves ofĜ2â andc2â are plotted for
the different bridging parameters,â and b̂ ~Figs. 9–13!. There
exist three types ofĜ2â curves: Type 1: monotonously increa
ing, Type 2: monotonously decreasing, and Type 3: an initial
crease followed by decrease. When the values ofâ and b̂ are
comparatively small, but not zero, the curveĜ2â is composed of
an ascending region and a descending region, i.e., the Typ

Fig. 6 Curves of W̄mÀsÕscr for the delamination bridged by
fibers with quadratically hardening type

Fig. 7 Curves of GÀsÕscr for the delamination bridged by fi-
bers of a quadratically hardening type

Fig. 8 Curves of cÀsÕscr for the delamination bridged by fi-
bers of a quadratically hardening type
DECEMBER 2000, Vol. 67 Õ 781
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Fig. 9 Curves of ĜÀâ for b̂Ä0 and different values of â

Fig. 10 Curves of ĜÀâ for b̂Ä5Ã10À4 and different values
of â

Fig. 11 Curves of ĜÀâ for âÄ5Ã10À4 and different values
of b̂

Fig. 12 Curves of cÀâ for b̂Ä0 and different values of â
782 Õ Vol. 67, DECEMBER 2000
curve. This demonstrates that during the post-buckling stages
51.2scr), if the energy release rate reaches a critical value~i.e.,
fracture toughness! keepings fixed, the delamination~with initial
radius â510! will reach a stable state after experiencing a d
namic growth in a certain range. As the bridging parameteâ
increases, the dynamic effectDĜ and the rangeDâ of unstable
delamination growth decrease~see the curve forâ51531024 in
Fig. 9!. For an unbridged delamination~dashed line in Fig. 9!, i.e.,
â5b̂50, the energy release rateĜ increases monotonously with
increasing delamination radiusâ, which illustrates that the
delamination growth will be catastrophic once it initiates. Whenâ
increases to a certain value, the curveĜ2â descends monoto
nously, indicating that the delamination is stable, i.e., furth
growth will occur only if the stresss is increased. This conclusion
is the same as the one drawn in our previous work dealing w
the linear bridging model~@17,18,21#!, that is, the presence of th
fiber bridge impedes catastrophic delamination growth.

Figures 9, 10, and 11 also show that the energy release
during delamination growth decreases with increasing nonlin
parameterb̂, which increases the toughness of the initial delam
nation growth. Moreover, the rangeDâ and the dynamic effect
DĜ of unstable delamination growth significantly decrease w
increasingb̂. That is, increasing the nonlinear parameter i
proves the stability of the delamination growth~dashed line in
Fig. 11 is the boundary between the stable and unstable regio!.
Figs. 12 and 13 show the variation of the mixed mode str
intensity ratioc corresponding to Figs. 9 and 10, respectively.

The relation between the energy release rate and the delam
tion radius under different stress fields forâ51531024, b̂55
31024 is shown in Fig. 14. As the energy release rate increa
with increasing stress field, the ascending part of the curveĜ
2â shortens and the curve changes gradually to the mon

Fig. 13 Curves of cÀâ for b̂Ä5Ã10À4 and different values
of â

Fig. 14 Curves of ĜÀâ for âÄ15Ã10À4, b̂Ä5Ã10À4 and dif-
ferent values of s
Transactions of the ASME
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nously descending type. In other words, for the bridged dela
nation, the higher the material fracture toughness, the higher
stability of the delamination growth, and the smaller its range a
dynamic effect of the unstable growth.

6 Conclusion
Based on to the above analysis, the following conclusions

be drawn:

1 There exists an unstable region for the softening-type fi
bridging model during initial post-buckling. At the beginning o
post-buckling, the central deflection of the delamination, the
ergy release rate at the delamination tip and the mixed-m
stress intensity ratio experience sudden changes. Thereafter,
buckling becomes stable. This phenomenon results likely in
stable delamination growth for materials with lower fractu
toughness when the delamination buckles rather than p
buckles. The initial post-buckling for the hardening-type mode
stable. The residual stiffness of the composite increases with
increase of the nonlinear parameterb̄. The linear bridging model
forms the boundary between stable and unstable states durin
tial postbuckling.

2 The critical buckling stress of a delamination bridged by q
dratically hardening fibers is the same as that of an unbrid
delamination. The potential for mode II delamination growth d
creases with increasing nonlinear bridging parameter.

3 Bridging force changes the catastrophic nature of delam
tion growth and increases the stability of delamination. With
bridging parameters increasing and the energy release rate
creasing, the initial delamination growth toughness is improv
In addition, the range and the dynamic effect of unstable dela
nation growth diminish or disappear as the bridging parame
increase.

4 For the bridged delamination, the higher the material fract
toughness, the higher the stability of the delamination growth,
the smaller the range and dynamic effect of its unstable grow
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Appendix A
Expressions w̄1i(j) ( i 50,1,2,3, . . . ) for the delamination

buckling deflectionw̄1(j) appearing in Eq.~12b! are as follows:

w̄10~j!50.287110.7129BesselJ~0,3.8317j!

w̄11~j!5j2~12j2!2~20.0042335410.00206874j2

20.000465723j410.0000496396j610.0000269719j8

20.0000171247j101 . . . !

w̄12~j!5j2~12j2!2~20.000012540310.0000139607j2

24.508731026j418.13331027j621.3695731027j8

12.9727431028j101 . . . !

w̄13~j!5j2~12j2!2~22.731523102814.57831028j2

22.5600831028j416.0979931029j6

28.94374310210j819.72303310211j101 . . . !

w̄14~j!5j2~12j2!2~23.459331021119.19294310211j2

27.79477310211j412.94059310211j6

25.43832310212j815.37387310213j101 . . . !
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w̄15~j!5j2~12j2!2~3.3978331021415.70367310214j2

21.23455310213j417.69192310214j6

22.16369310214j812.50684310215j101 . . . !

w̄16~j!5j2~12j2!2~3.6966131021624.15562310216j2

19.06572310217j416.7624310217j6

24.19366310217j817.21486310218j101 . . . !

w̄17~j!5j2~12j2!2~1.2820831021822.12341310218j2

11.31773310218j423.6009310219j6

12.73422310220j813.69499310221j101 . . . !

w̄18~j!5j2~12j2!2~2.6162731022125.72007310221j2

14.77626310221j422.04609310221j6

14.77547310222j825.19869310223j101 . . . !

w̄19~j!5j2~12j2!2~1.1280331022427.58201310224j2

19.65879310224j425.64269310224j6

11.75687310224j822.47349310225j101 . . . !

. . .

. . .

Letting w̄18(1)5( i 50
` w̄1i8 (1)ā i50, the characteristic delaminatio

radius for initial buckling can be obtained:

ā* 5
a0

4

D
a5176.502 or a053.6499AD/a. (A1)

Its physical meaning is shown in Fig. 15.

Appendix B
In the post-buckled delamination state, the bridging force~trac-

tion due to the bridge! acting on the delamination surface wi
bring about closure of delamination cracking. It contributes to
fracture toughnessDGb , i.e., counteracts a part of the energ
release rate at the crack tip, which can be determined by calc
ing the virtual work of the bridging force when the delaminatio
propagates virtually. Assuming that the delamination propaga
to a1da, the virtual displacement of the delamination isdw, and
the virtual workdGb ~per unit length! of the bridging force is

dGb5
1

2pa S E
0

a1da

q~w1dw!2prdr 2E
0

a

qw2prdr D
5

1

a S E
0

a

q
dw

da
rdr 1@q~w1dw!r #U

r 5a
D da. (B1)

Substituting~1! into the above equation and considering t
displacement boundary conditionw(a)50 and the relation

Fig. 15 The deflections of the delamination buckling for
different ā
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lim
da→0

dw

da
5

]w

]a
52

r

a

]w

]r
(B2)

yields, after some simplification,

DGb5 lim
da→0

dGb

da
5

1

a E0

a

q
]w

]a
rdr 5

1

a2 E
0

aS aw21
2

3
bw3D rdr .

(B3)

Substituting~4! into ~B3! leads to

DḠb5
Eha4

D2 DGb52E
0

1S āw̄~j!21
2

3
b̄w̄~j!3D jdj. (B4)
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Structural Dynamic Effects on
Interface Response: Formulation
and Simulation Under Partial
Slipping Conditions
A new formulation for dynamic sliding contact problems with partial slipping is presen
and used to investigate the influence of structural dynamic response on interface b
ior. The mixed differential-algebraic equation (MDAE) approach uses differential eq
tions to describe the slipping dynamics and algebraic (constraint) equations to m
interfacial sticking. An efficient method for solving the case of partial interface slipp
has been developed, and special consideration has been given to the changing equ
of motion (at the transition from stick-to-slip and slip-to-stick). An example is prese
for the case of an elastic block pressed into a rigid foundation and loaded with c
tangential tractions at the top of the block. The full elastodynamic transient simulat
illustrate that interface slip response is a strong function of loading frequency, reac
a maximum when the external loading frequency is near the theoretical (shear-m
natural frequency of the structure.@S0021-8936~00!02204-2#
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1 Introduction
Many mechanical systems rely upon friction elements

proper and efficient function. The details of surface interaction
localized regions of the nominal contact area are crucial to
efficiency and durability of the components. For example, bra
and clutches transmit power across friction interfaces, with un
vorable local interface conditions often resulting in ‘‘ho
spotting’’ ~@1#!. Machine tools slideways, which guide cuttin
tools with accuracy and precision, and joints in robotic manipu
tors experience performance limitations due to small-scale st
slip ~see, for example,@2#!. Riveted and bolted connections an
turbine blade mounts for power generation or aerospace app
tions are susceptible to fretting fatigue failure, with local interfa
mechanics playing an important role~see, for example,@3#!
on crack initiation and propagation. Frequency dependence
fretting experiment results has also been demonstrated in
literature by So¨derberg, Bryggman, and McCullough@4#,
Bryggman and So¨derberg@5#, and Schouterden, Blanpain, Cel
and Vingsbo@6#.

As such, understanding the implications of interfacial friction
mechanical systems is important—particularly the impact of s
tem dynamics on interface response. Coupling between in-p
~tangential! and out-of-plane~normal! response in sliding system
plays an important role in interface behavior. The importance
normal motion in contact systems with friction was first elab
rated by Tolstoi@7#, in which he described synchronous tangent
and normal motion during stick-slip vibrations. Further efforts
determine the role of normal motion on friction system perf
mance include those of Budanov, Kudinov, and Tolstoi@8#, Nayak
@9#, and Gray and Johnson@10#. Contemporary models of friction
excited vibrations and friction interface phenomena still gener
rely upon lumped parameterdiscretemodels, although many in

1To whom all correspondence should be addresed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
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Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME Journal of Applied Mechanics.
Copyright © 2Journal of Applied Mechanics
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clude both translational and angular degrees-of-freedom~Hess
and Soom@11#, Oden and Martins@12#, Martins, Oden, and Si-
moes@13#, and Tworzydlo, Becker, and Oden@14#!. Other recent
works have included multiple inertia elements as well~@15#!. Al-
though various mechanisms of normal-tangential coupling h
been established and analyzed, these lumped parameter dyn
models do not allow detailed examination of the spatial variatio
in contact pressure, friction tractions, and stick or slip at the c
tact interface. Furthermore, some stick-slip models actually us
friction regularization procedure, in which the friction discontin
ity at zero relative velocity is approximated by a smooth, contin
ously differentiable function~e.g., arctan-type models!. This ap-
proximation precludes stick-slip behavior~which requires a
multivalued friction force at zero relative velocity!, but it can
provide some interesting insight into friction-excited syste
dynamics.

Models capturing the highly localized details of interface b
havior demand continuous treatments of the components. For
ample, an approach to continuous dynamic contact modelin
presented by Oden and Martins@12#. A third-body approach, in
which the contact interface possesses constitutive propertie
used in numerical simulations of contact systems. The study
ploys friction modeling which approximates the discontinuous
havior at zero relative velocity using a regularization proced
based upon a small parametere. The result of the regularization is
the nonexistence of the zero velocity sticking state, in favor o
near-zero velocity condition which allows interfacial creep w
very small relative velocity~smaller than the regularization pa
rameter!. The authors demonstrate some spatial dependenc
friction and normal force results, but focus more on other issu
including rotational degrees-of-freedom, and the dynamic asp
of frictional contact such as eigenvalues and successive linea
tion around the steady sliding equilibrium point. Other relat
works include Martins et al.@13# and the low-order continuum
model of Mahajani@16#.

A variety of rate and state-dependent friction models have b
applied to investigate the stability of steady-sliding conditions,
applied to geomechanics and unstable fault slip~Dieterich @17#,
Dieterich @18#, Dieterich @19#, Rice and Ruina@20#, Gu, Rice,
Ruina, and Tse@21#!. In these models, frictional shear stress
viewed as a function of slip rate~i.e., relative velocity!, slip his-
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tory, and possibly other interfacial ‘‘states.’’ As a result, chang
in sliding velocity produce two components of interfacial she
stress response: one instantaneous, and one evolutionary.
sliding over some critical distancedc , the interfacial shear stres
achieves a steady-state value and remains there until the nex
turbance in sliding velocity. Step changes in normal stress sho
similar instantaneous-plus-evolutionary response of shear st
The implications of these models on systems with smoothly va
ing velocity or normal force are unclear. The models have b
used to examine stability of steady sliding conditions, as app
to geomechanics and unstable fault slip in a single-degree
freedom system~@21#! as well as continuous contact elast
systems~@22#!.

Recently, Adams, in a series of articles, has examined cont
ous elastic components in sliding contact~@13,24,25#!. Using elas-
tic half-spaces in dry contact as a candidate system, he concl
that the material response along the interface, and in partic
slip wave propagation, can be a potentially destabilizing mec
nism for steady sliding. Adams@23# used analytical tools to de
termine conditions under which the onset of loss-of-contact
stick-slip interface response can be expected; actual stick-slip
lutions are not presented. Adams@24# demonstrates that interfac
slip waves can account for the apparent velocity-dependenc
friction coefficient measurements. Finally, in Adams@25#, relative
motion between the half-spaces without gross slipping at the
terface is demonstrated for cases in which separation pu
propagate along the interface. In each case, he uses a velo
independent friction coefficient, and he makes no distinction
tween static and kinetic friction.

A final important contribution has been the work Menq a
co-workers, who have analyzed microslip~regions of interface
slip which are small relative to the contact size! in friction damp-
ers used in aerospace turbine blades. Menq has investigated
contact stick/slip models~@26,27#! using a linearization techniqu
~one-term harmonic balance! to develop approximate analytica
solutions for the blade response. In a more detailed analy
Menq again utilized the harmonic balance approach in a cont
ous blade-damper model composed of an elastic bar, retai
spring, and contact shear layer with spatially constant norma
terface pressure~@28,29#!. The contact normal pressure across t
damper interface is assumed constant, and microslip is im
mented using an elastoplastic shear layer at the contact inter
Menq’s results clearly illustrate the importance of considering
croslip in blade life calculations, but rely substantially on jud
cious choice of microslip model parameters~shear layer stiffness
and strength, equivalent bar modulus and area! to achieve reason
able quantitative agreement with experimental results.
786 Õ Vol. 67, DECEMBER 2000
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In light of the importance of accurate determination of interfa
slip amplitude under a variety of contact conditions, this pa
presents numerical solutions of the piecewise nonlinear dyna
equations of motion for partial slip dynamic contact problems i
finite domain. This work allows zero relative velocity response
the contacting nodes, and computes the consequent effect on
gential interface traction. This approach does not rely upon a f
tion regularization or smoothing procedure, and it includes
tailed spatial discretization of the contact interface. The numer
tool described in this paper is capable of quantifying interface
amplitude under truly dynamic operating conditions which
clude the full range of contact scenarios, including loss of cont
Sample results are presented for an idealized loading scen
whereby the normal pressure across the contact interface due
constant far-field pressure~i.e., away from the contact interface! is
high enough to prevent loss of contact. It should be emphas
that the temporal and spatial variation in normal pressure du
system dynamics is explicitly accounted for. Despite the appa
simplicity of the geometry and loading, the results indicate t
component dynamic response can fundamentally affect the in
face behavior, including both slip amplitude and size of slippi
region.

2 Mathematical Model
The motivating system for this analysis is shown in Fig. 1~a!.

This system originates in the traditional one-degree-of-freed
rigid-body system used in the literature to study a variety
friction-excited systems. However, in this research, the slid
component is considered to be acontinuouselastic system, at-
tached to ground via a discrete spring and damper. The nume
approach outlined here is for a two-dimensional body in cont
with a rigid surface that translates at velocityVref . The body is
loaded by a distributed normal pressure,Papp(x,t) and a distrib-
uted tangential tractionQapp(x,t) along its top edge; both of the
applied loads can be functions of timet. Interface friction is de-
scribed by a general frictional shear stress constitutive relat
The properties of the system include Young’s modulusE and
Poisson’s ration, as well as the total inertia of the moving surfac
I. Note the two most crucial features of then-degree-of-freedom
discretized system, shown in Fig. 1~b!: ~i! dynamic effects and
localized interface behavior are captured, and~ii ! normal motion
is included in a physically realistic way. In the formulation pr
sented here, loss of contact is not considered; this phenomen
not relevant to the scenarios of primary interest, which invo
large normal pressures generally prohibiting loss of contact. S
variations in normal pressure at the interface due to dynamic
Fig. 1 System for partial slip contact dynamics study: „a… continuous contact physical system,
„b… discrete system for partial slip contact study
Transactions of the ASME
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sponse are rigorously accounted for. The contact pressure is m
tored to insure the assumption of continuous contact is valid,
the approach here can be generalized to include loss of con
Shown on the figure are discrete applied forces at nodei ~Fp

i and
Fq

i , in the normal and tangential directions! as well as the noda
interface friction coefficientsm j and m j 11 for the neighboringj
and j 11 interface nodes.

2.1 Continuous Description and Discrete Equations of
Motion. The governing equation for the dynamic response
the continuous system can be derived in the usual manner
the principal of virtual work, with the inertial and damping term
included as body forces. The resulting statement is

E
V
~s i j , j1rüi1cmu̇i !duidV5E

S
TiduidS (1)

in which ui is displacement,cm is a material damping paramete
andTi is a surface traction. The friction shear stress in a slipp
region along the interface can be represented in a general wa
a rate and state-dependent friction law~for example, Rice and
Ruina @22#, Rice @20#, or Ben-Zion and Rice@30#!:

t f5t f~Vrel ,u1 ,u2 , . . . ! (2)

whereu i are the interface ‘‘states,’’ each with its own equatio
governing its rate of change. Note that this approach may in
porate state variables that depend on the history of deforma
by defining appropriate evolution equations foru i ; thus Eq.~2! is
an implicit function of time. The integral of the frictional shear
related to the reference velocityVref of the moving surface as
follows:

IV̇ ref1cbVref5E
0

L

t f dx (3)

whereL is the interface length, andcb is the damping associate
with the surface motion~possibly attributed to resistance in th
bearings of the pulleys, for example!.

In the ensuing discussions, it will be convenient to reference
effective friction coefficient, instead of the shear stress const
tive law described above. The effective friction coefficient is d
fined as

meffH 5
t f

syy
; VrelÞ0

<~mmax!; Vrel50

(4)

during the slipping and sticking portions of the response.syy is
the interface normal pressure,a function of space and time, and
mmax is a limiting value for the sticking friction coefficient. Not
that during slipping, botht f andsyy are implicit functions of time
and space. Calculation of the effective friction coefficient atVrel
50 is nontrivial and is explained in more detail in a subsequ
section.

Element matrix formulation is achieved using the standard
nite element coordinate transformations with linear shape fu
tions. A supplemental set of elements and interpolation functi
has been defined for calculations along the contact interface.
so-called ‘‘surface’’~interface! elements, simply one-dimensiona
elements using linear shape functionsNi

s , are used to derive the
boundary loading vector due to contact friction interactio
Therefore, along the contact interface, frictional shear stress i
interpolated quantity, and the local interface effective friction c
efficient can be written:

meff
e ~j!5(

i 51

i 52

meff,i
e Ni

s~j! (5)

wherej is a natural coordinate along the element.
Journal of Applied Mechanics
oni-
nd

tact.

of
rom
s

,
ng
y by

n
or-
ion,

s

e

an
itu-
e-

nt

fi-
nc-
ns

The
l

s.
an

o-

After performing the necessary finite element matrix manipu
tions, the resulting discrete equations of motion for a system
n/2 nodes andm interface nodes are

@M # ẍ1@C# ẋ1@K#x5F5Ff1Fp1Fq (6)

where the vectorx contains bothx and y-displacements of the
nodes, and therefore has size (n31). The right-hand side of the
equation contains the friction force vectorFf(n31) and also the
normal and tangential traction vectorsFp(n31) and Fq(n31),
associated with the known pressure distributionPapp(x,t) and
known shear tractionQapp(x,t), respectively. In the nonconstan
reference velocity case, a discretized version of Eq.~3! can be
added to the system above, yielding an augmented systemn
11 second-order differential equations. It should be noted ag
that the velocity-dependent terms in the discretized equation
not arise from a rate-dependent stress-strain relationship,
rather from the assumption that there is a dissipative body fo
proportional to velocity~see Eq.~1!!.

2.2 Boundary Tractions: Interface Shear Stress Calcula-
tions. The right-hand side of Eq.~6! involves contributions
from applied loads~Fp andFq, derived following usual finite el-
ement procedures! and contact interface behavior (Ff). The con-
tinuous equation for frictional shear traction at the contact surf
was given by Eq.~2!. In order to determine nodal friction force
values for each surface element, the surface element interpola
functions must be used in the following integral expression:

Ff
e5E

Le

@Ns#Tt f dx (7)

where@Ns# is the interpolation function matrix,Le is the interface
element length, andt f5meffsyy is the frictional shear traction on
the contact surface.

The stress componentsyy is in general a function of space an
time, and it can be determined along the contact interface u
the stress-strain strain-displacement, and interpolation func
expressions above:

$s~x~ t !!%5@E#@L#@N#x~ t ! (8)

where @N# is the matrix of shape functions for the domain el
ments. Using the friction coefficient expression, Eq.~5!, the inte-
gral ~7! becomes

Ff
e5E

Le

syy~x~ t !!@Ns#T@Ns#$meff
e %dx (9)

5H E
Le

syy~x~ t !!@Ns#T@Ns#dxJ $meff
e % (10)

where$meff
e % is the vector of nodal effective friction coefficient

for surface elemente. The integral can be evaluated using Gau
ian quadrature for each element, resulting in the following expr
sion for the global friction force vector, assembled from the
emental expressions:

Ff5@ F̂ f #$meff%. (11)

@ F̂ f #(n3m) is in general not a diagonal matrix~a banded ma-
trix of bandwidth 3 for line elements on the contact surface!, and
$meff%(m31) is a vector containing the effective contact frictio
coefficients for them interface nodes. Because of the band
structure of the@ F̂ f # matrix, this equation implies that the friction
force acting at a particular contact node depends not only upon
effective friction coefficient at that node, butalso upon the effec-
tive friction coefficients of neighboring nodes.The important im-
plication for systems in which partial slipping occurs is that t
friction force at a slipping node depends upon not only the kno
effective friction coefficient at the slipping node, but also the u
known sticking effective friction coefficient at neighboring stic
ing nodes.
DECEMBER 2000, Vol. 67 Õ 787
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As a result, if the number of sticking nodes isp, the contact
friction force equation can be rewritten as follows:

Ff5@ F̂ f
stick#$meff

stick%1@ F̂ f
slip#$meff

slip% (12)

where$meff
stick%(p31) contains the effective sticking friction coe

ficients, and$meff
slip%((m2p)31) contains the effective slipping

friction coefficients. Therefore, the other matrices have the
lowing sizes:

@ F̂ f
stick#; n3p (13)

@ F̂ f
slip#; n3~m2p!. (14)

In this way, the sticking and slipping effective friction coefficien
have been isolated for later use; note that the reduced-order
trices@ F̂ f

stick# and@ F̂ f
slip# are constructed directly using the appr

priate columns of the full matrix@ F̂ f #. Each of these matrices i
updated at every time-step to reflect the changing interface no
forces~see Eqs.~10! through~11!!.

2.3 Sticking Motion and Constraint Equations. During
sticking of a contact node, the motion of that node is constrai
by the following relation:

Vref2 ẋi50 (15)

whereẋi is thex-direction velocity of the sticking contact node. I
general, the constraint equations for all the sticking nodes ca
written in matrix form

@F#H ẋ

Vref
J 50 (16)

where the coefficient matrix@F# (p3(n11)) has as many rows
are there are sticking nodes. The rows of@F# have~21!’s in the
column corresponding toẋi , and~1!’s in the last column~corre-
sponding to the reference velocity!. For use in the numerica
scheme detailed next, the constraint equations on the acceler
level must be developed by differentiating Eq.~16!:

@F#H ẍ

V̇ref
J 50. (17)

Finally, note that in the constant reference velocity case, the c
straint equations given by Eq.~15! become

ẍi50 (18)

and the reference velocity is removed from the system of c
straint equations~Eq. ~17!!.

2.4 The Mixed Differential-Algebraic Equation „MDAE …:
Global System of Equations. Stick-slip calculations require
special care because of the following observations:~i! for a slip-
ping contact node, the effective friction coefficient is know
while its motion is unknown, and~ii ! for a sticking contact node
the motion is known, while the effective friction coefficient
unknown. In the first case, differential equations arise for the
namic motion of the system, while in the second case, algeb
equations describing the constraint forces on the sticking con
nodes can be derived. A convenient means of handling th
equations is the mixed differential-algebraic equation, descri
by Haug@31# and stated as follows:

F @M # 2@ F̂ f
stick#

@F# @0#
G H ẍ

$meff
stick%J

5H 2@C# ẋ2@K#x1Fp1Fq1@ F̂ f
slip#$meff

slip%

0 J . (19)

This formulation allows the effective contact sticking friction c
efficients to be solved for directly. The partitioned system of E
~19! includes both the differential and algebraic equations,
788 Õ Vol. 67, DECEMBER 2000
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couples them together so that simultaneous solution for the ve
of unknowns insures a set of ‘‘compatible’’ accelerations a
sticking effective friction coefficients. Using the two reduce
order matrices@ F̂ f

stick# and@ F̂ f
slip# allows decoupling of the known

and unknown effective friction coefficients. The result of this pr
cedure is that both the differential and algebraic equations
guaranteed to be satisfied.

3 Solution Algorithm and Stick-Slip Detection
Stick-slip transition times for the contact nodes during syst

motion must be determined accurately in order to avoid numer
difficulties; recall that the equations of motion are explicit
changed from differential to algebraic at a slip-to-stick transiti
~and the opposite way for a stick-to-slip transition!. Relatively
large time-steps can be used in regions away from the trans
points where the system dynamics are well behaved, while v
small time-steps must be used in the vicinity of the transit
points. Guidelines for choosing an appropriate time-step are il
trated in the context of a specific example presented in the n
section. An efficient algorithm has been developed to accura
determine the transition points for both slip-to-stick and stick-
slip.

3.1 Stick-Slip Transitions. The transition point from slip
to stick can be determined using a simple zeroth-order optim
tion procedure as follows. The relative velocity of a nodeVrel,i can
be used to define a cost function for optimization when conside
as shown in Fig. 2. If at a particular time-step, say time-stepi, the
sign of the relative velocity changes, the sticking boundary
been crossed. At this point, it is useful to iterate and find~to some
pre-determined numerical accuracy! the exact time of crossing
tcross. The unimodal cost function which can be used for th
purpose is

Fsl5uVref2 ẋi u. (20)

The minimum of this function isFsl50, which occurs at the time
t5tcross. This procedure in practice works well, because lar
time-steps can be used until a crossing point has been dete
then, the time-step is iteratively decreased until the exact cros
time is determined, and the integration again proceeds with
larger time-step.

A similar procedure is used to detect changes from sticking
slipping. In this case, the cost function for optimization is

Fst5@mmax2meff,i #
2 (21)

which once again has a minimum value ofFst50 at the transition
point. Both of these optimization procedures can be implemen
using any of the zeroth-order methods described in, for exam
Haftka and Gu¨rdal @32#, and a golden section line search alg
rithm has been used here.

Fig. 2 Stick-slip detection algorithm using zeroth-order opti-
mization
Transactions of the ASME
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3.2 Equation Normalization. For then discrete equations
of motion, there existn natural frequencies; for realistic materi
stiffness and density parameters and reasonable geometrie
natural frequencies of the structure will be widely spaced~perhaps
over several orders of magnitude!. The requirements for tempora
resolution in the numerical simulation then make the compu
tional cost of the procedure quite high. It is important to deve
a procedure which helps to reduce the cost, and the follow
equation normalization has been employed.

The key scaling parameters~with their units! for the equations
are the following:

ĉ5A E

rL2; material wave frequencyF1

sG
t5 ĉt; dimensionless time@ #

x̂5
x

L
; dimensionless displacement@ #

whereA is the domain area andL is the domain length~measured
along the interface!. Using these quantities as scaling factors, tim
differentiation becomes

d

dt
~ . . . !5

1

ĉ

d

dt
~ . . . !5~ . . . !8 (22)

d2

dt2 ~ . . . !5
1

ĉ2

d2

dt2
~ . . . !5~ . . . !9. (23)

In addition, common factors are extracted from each of the
namic matrices as follows:

@M̂ #5
@M #

rAL
; scaled mass matrix

@Ĉ#5
@C#

cmAL
; scaled damping matrix

@K̂#5
@K#

EA
; scaled stiffness matrix.

Each of these scaled matrices is dimensionless. Using the
and length scaling as described above, and factorization of
mass, stiffness, and damping matrices, the dimensionless slip
equations of motion can be rewritten as

@M̂ # x̂91
cm

r ĉ
@Ĉ# x̂81@K̂# x̂5

1

rALĉ2 @Ff1Fp1Fq# (24)

wherecm is a characteristic volumetric material damping para
eter with units of@(N2s)/m#(1/m3). Similar scaling procedures
using the defined parameters, can be applied to the other equa
of motion for the system, including sticking equation, the mix
differential-algebraic equation, constraint equations, etc.

The crucial implication of this scaling procedure on solution
the equations is that the natural frequencies of the discrete sys
which strongly influence the temporal resolution requirement
simulations, areindependentof material parametersE andr. In-
stead, they are a function of only the domain geometry and n
positions. As a result, the bandwidth over which the natural
quencies exist is much smaller than for the case of fully dim
sional equations of motion~as in Eq.~6! above!. Therefore, time-
stepping through the dimensionless equations of motion beco
much less expensive than solving the fully dimensional equat
of motion.

4 Application to a Dynamic Partial Slip Problem
In this section, the approach for dynamic contact calculatio

including the piecewise equations of motion related to stick-s
oscillations, are applied to an example problem that is relevan
partial slip contact in blade dampers in turbines~@33#!. A sche-
Journal of Applied Mechanics
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matic of the geometry and loading parameters for the exam
problem is shown in Fig. 3. In the following example, the temp
rally constant applied normal pressurePapp(x) is related to the
time-varying applied tangential loadingQapp(x,t) as follows:

Qapp~x,t !5m farPapp~x!sin~vt ! (25)

wherem far is a far-field loading parameter, andv is the tangential
loading frequency. Their discrete~finite element method! counter-
parts are shown as the far-field loading vectorsFp andFq on Fig.
3. In all cases, the interface normal pressuresyy is closely moni-
tored to insure that the no-loss-of-contact assumption is accu
In the cases presented here,syy,0 for all x, and contact occurs
along the entire interface throughout the full simulation.

For the loading parameters used here, which result in pa
slipping of the interface, small slip velocities and displaceme
are observed. As a result, the history-dependence of the gen
ized friction law of Eq.~2! is negligible; in this scenario, a simpl
rate-dependent friction law is appropriate:

meff~Vrel!5m01m1expS 2
1

Vo
uVrelu D (26)

which is valid only for nonzero relative velocity. This approach
equivalent to assuming the slip displacements observed in pa
slip contact are much smaller than any characteristic slip lengt
defined by the rate and state-dependent friction equations. In
dition, because evolutionary models are typically described
stepchanges in velocity, and the current work considersforced
responseto harmonic excitation, the definition of friction evolu
tion in reciprocating contact is unclear. The results presented
are restricted to the case for which gross slip is not considered
estimate for the maximum allowable tangential traction magnitu
~such that gross slip does not occur! is found by treating the de-
formation as quasi-static:

m far,~m01m1!. (27)

Simulation parameters for the results shown in this section
listed in Table 1. In this case, a stationary reference surfaceVref
50 is assumed. The dimensionless first shear mode natural
quency for the partially constrained~i.e., partial sticking boundary
condition! elastic body has been calculated;v1'0.65. The actual
value of first natural frequency depends upon how large the st
ing zone is. The eigenvalue problem has been solved using
discrete mass, damping, and stiffness matrices determined
the finite element procedure above, with only one node~on the
center line of symmetry! sticking, and a frictionless boundary con
dition elsewhere. This is a limiting behavior which predicts

Fig. 3 Schematic of domain geometry and loading conditions
for an example problem
DECEMBER 2000, Vol. 67 Õ 789
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lower boundfor the first shear mode natural frequency; larg
sticking zones imply a stiffer system, and therefore a higher n
ral frequency.

The time-stepDt for the numerical simulations requires som
trial and error to determine. In particular, the transition from st
to slip, and slip to stick, of a node is a very high frequency p
nomenon, requiring a very small time-step to capture accura
However, as discussed in Section 3.1, an efficient procedure
accurately determining the transition time has been implemen
Away from the stick-slip transition points, the required time-st
is governed by the natural frequencies of the system. The fun
mental time-step~for calculations away from the stick-slip trans
tion points! should be small enough to capture the highest f
quency of interest. For the simulations presented here, the t
step isDt50.01 ~dimensionless seconds!. By contrast, the forced
response for the range of frequency examined here has a m
mum fundamental period ofT'2p ~dimensionless seconds!, so at
least 600 time points are captured per forcing cycle.

Figure 4 shows the normalized interface node velocity respo
as a function of time. Note that there are periods during which

Table 1 Simulation parameters used for dynamic stick-slip
calculations

Parameter Units Value

Applied pressure Pa Papp(x)5P0

513107 ~constant!
Friction parameters - m050.1

- m150.02
m/s Vo52.0

Material modulus Pa E52003109

Material density kg/m3 r57850
Damping parameter N2s/m4 cm5250
Reference velocity m/s Vref50
Length m L51
Height m h51
First shear mode natural frequency - v1'0.65
Time step - Dt50.01
Numberx-nodes - 9
Numbery-nodes - 4
790 Õ Vol. 67, DECEMBER 2000
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many as four interface nodes experience slipping~see the inset to
Fig. 4!. More importantly, there also exist operating periods
total stick ~all nodes at zero velocity!, as well as operation with
only the contact edges slipping. The large response peak nea
beginning of the time history is a start-up transient which
quickly damped. A different view of this same data is shown
the waterfall plot of Fig. 5, which clearly shows the contact cen
experiencing sustained stick, as expected. In the waterfall p
every 50th data point has been plotted to improve the clarity of
figure. In addition, the transient period toward the beginning
the time history has been neglected in this plot. Note that the e
velocities vary with the same frequency~v51! as the tangential

Fig. 4 Dimensionless interface velocity response for vÄ1 and
m farÄ0.05; inset: close-up showing detail of partial slipping
response
Fig. 5 Waterfall plot showing regions of consistent stick „center of contact … and regions of
nonzero dynamic response in phase with tangential forcing „vÄ1 and m farÄ0.05…
Transactions of the ASME
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forcing. The numerical algorithm produces very stable predicti
for slip amplitude, interface~partial! stick-slip, and effective fric-
tion coefficient~not shown!.

Figure 6 shows the variation of maximum normalized displa
ment response~for the node at the left contact edge! as a function
of tangential forcing frequencyv. The displacements are norma
ized by the slip displacement resulting from a quasi-static anal
of the type typically used in the contact mechanics commun
~see Johnson@34# for details!. ~Obviously, the number of interface
nodes is limited here to reduce computational expense; m
finely meshed quasi-static analyses using the commercial c
ABAQUS indicate that the quasi-static slip displacements for
relatively coarse mesh presented here are within ten percen
those resulting from more detailed analyses.! The choice of nor-
malization emphasizes the dramatic increase in slip displacem
as the excitation frequency approaches the first shear mode na
frequency~v1'0.65, marked on the figure!. It is interesting to
note that the peak in response amplitude is observed slig
above the lower bound estimate of the natural frequency.
interplay between dynamic excitation and slip behavior is furt
emphasized in Fig. 7, in which the time-averaged percent of
interface experiencing sticking is plotted as a function of tang
tial forcing frequency. Slip behavior which is confined to the co
tact edges at low frequencies extends towards the center of co
near the first shear natural frequency.

Fig. 6 Edge node maximum normalized slip displacement ver-
sus tangential forcing frequency

Fig. 7 Average percent of the interface experiencing sticking
versus tangential forcing frequency
Journal of Applied Mechanics
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5 Discussion and Implications
The analytical modeling and numerical solution procedures

veloped here, including the MDAE formulation for the parti
slipping dynamics problem, show excellent performance in c
turing complicated interface behavior. For finite-domain syste
experiencing dynamic loading, or for which system dynamic
fects are likely to play a significant role in interface response,
techniques developed here provide powerful tools for fully tra
sient interface calculations. The partial slip regime can be c
tured, and the slip amplitudes can be calculated directly. In a
tion, interface friction force variations under partial slippin
conditions can be determined.

The numerical algorithm for dynamic stick-slip interface r
sponse calculations presented here has also produced intere
results with regard to frequency-dependence of interface respo
Indeed, it appears that under certain frequency tuning relat
ships, i.e., (v/v1) '1, the interface response can be large. T
resonance phenomenon clearly has strong implications on in
face response, and nonresonant excitation results in a smalle
terface response with a larger portion of the interface experien
sticking ~Figs. 6 and 7!. In addition, the numerical algorithm cap
tures out-of-plane motion as well as spatial and temporal va
tions in interface normal forces. However, for the range of load
presented here, normal motion of the body and interface nor
force variations are small.

It is important to point out that the spatially and tempora
complicated~and, in fact, frequency-dependent! interface behav-
ior is not attributable to a self-excited sliding instability. Indeed
is the dynamic response of the structure itself which influences
interface response. Self-excited interface vibrations of the k
examined previously in the literature are precluded here by su
ciently large damping terms on the left-hand side of Eq.~24!. In
addition, for the system response under external harmonic ex
tion considered here, complicated localized behavior near
stick-slip boundary can be expected. The completely reversed
gential load produces reciprocating velocities, which pass thro
zero relative velocity twice per loading cycle; at the interface, t
implies that transitions between sticking~zero relative velocity!
and slipping occur frequently. In addition, the stick-slip bounda
itself moves during the loading cycle in response to change
both tangential and normal stress. The result is extremely
dynamic behavior along the contact interface.

There is an unresolved issue as to whether or not Rice’s a
ment of a critical cell size~@20#! is applicable here; the problem
considered here involves forced response of a damped system
does not exhibit slip instabilities. The question of whether or n
the system considered is ‘‘inherently discrete’’ is largely irre
evant since slip velocities and displacements are limited by
sticking region. Convergence tests have indicated that the
quency dependence of the results is independent of the mesh
and slip zone sizes are insensitive to mesh refinement; even
slip displacement magnitudes are relatively insensitive to m
refinement. This is supported by convergence studies for the
namic model and by comparisons with more detailed quasi-st
analyses.

Furthermore, Fig. 7 indicates that the tuning relationship
tween the tangential forcing frequency and the shear mode na
frequency can have an important impact on the interface dyn
ics. For example, because there is more energy available fo
terface in-plane deformation under resonant conditions, the
tem operates closer to a gross slip condition, with larger s
amplitudes. In this case, proper frequency tuning appears to
favorable~from a fatigue life viewpoint!, as the system is shifted
from the deleterious partial slipping condition, toward the lowe
wear gross slip condition.

The sensitivity of the results to changes in finite element
friction parameters can be estimated by considering a freque
response function~FRF! relating excitation shear traction and in
terface response~for a suitably linearized system!. General con-
DECEMBER 2000, Vol. 67 Õ 791
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clusions for the linearized FRF approach agree with the trend
the full finite element method solution. Damping tends to decre
the FRF amplitude at resonance, and therefore increasing ma
dampingcm will decrease the interface response. The frequenc
which slip response is maximum is related to component ge
etry, as well as density and modulus. For the small slip amplitu
associated with partial slip response, the results are veryinsensi-
tive to the velocity-dependence of friction~i.e., to m1!; this is
evidenced by the fact that the maximum relative velocity is ne
larger than several percent of the scaling velocity factor in
friction law. Therefore, it ism0 which governs the extent of partia
slipping. Finally, the extent of the coupling between structu
dynamic and interface response is governed by a combinatio
two parameters:~i! the magnitude of the structural FRF, and~ii !
the maximum allowable sticking friction force. Although th
range of parameters considered here is well within the rang
typical values seen in practice, a more systematic converge
study is undoubtedly called for. Such numerical simulations
beyond the scope of this paper, and will be presented in fu
work ~@33#!.

6 Conclusions
This paper presents a new algorithm for contact interface p

lems with partial slip under dynamic loading. The approach c
siders the full elastodynamic response of continuous elastic
tems with state-dependent friction laws, and as such consi
both the differential equations associated with slipping respo
and the algebraic constraint equations related to sticking respo
This model provides several distinct advantages over other mo
from the literature, most notably the accurate calculation of
following spatially and temporally varying parameters: interfa
contact normal and shear forces, interface slip displacement,
and slip zone sizes, and structural dynamic influence on inter
response.

The MDAE formulation provides a numerically stable means
determining the partial slipping response and sticking friction
efficients. The sample results presented here illustrate that
structural dynamics of the system being examined can play
important role in determining interface response. At certain t
gential forcing frequencies, a condition of almost pure slip res
at the interface, even form far50.05 in this case; the larger sli
amplitudes and smaller stick zone may result in operation i
different ~and less severe! wear regime. The implications of th
response shown in Fig. 6 are significant in many applications.
results shown in Fig. 6 illustrate that the slip distances and
zone sizes estimated from quasi-static calculations which ign
the structural dynamic response may significantly underestim
the behavior under dynamic loading.
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Deformation, Stress State, and
Thermodynamic Force for a
Transforming Spherical Inclusion
in an Elastic-Plastic Material
The progress of a transformed phase into an elastic-plastic parent phase is simulat
a growing sphere. The transformation is accompanied by a dilatational volume cha
The strain and stress state in the full space is presented. In addition, the local and g
energy terms are calculated. Finally the thermodynamic forces on the interface ar
rived. Also strain hardening is considered.@S0021-8936~00!00304-4#
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1 Introduction

In material physics a sphere with radiusR(t), t being time, is
very often used to represent a phase transformation nucleus
transforming microregion embedded in a parent phase. Roitb
and Temkin@1,2# and Kaganova and Roitburd@3# investigated the
martensitic transformation in an elastic-plastic material by suc
model. The transformation volume strain«* 5«oI , I unity tensor,
gives rise to an internal strain and stress state due to its acc
modation by the surrounding material. A slightly more gene
study for an elastic material with different material properties w
recently presented by Nazyrov and Freidin@4#.

Spheres as the product phase are also dealt with by se
researchers on diffusional transformation see, e.g., Vanderm
@5#.

Analytical solutions for the strain and stress state of the sph
imbedded in an infinite elastic-plastic material, with fixed radiusR
subjected to a sudden dilatational eigenstrain are usually app
This problem was surprisingly often treated in an independ
way in the literature. However, a comprehensive collection of
results is still lacking. The paper by Lee et al.@6# as well as the
review article by Fischer et al.@7# may be cited. Several mistake
exist in the diverse papers; these will be avoided in the follow
context. Since the pressure at the interface between the int
sphere with radiusR and the outer elastic-plastic space~hollow
sphere! can be considered as the unknown quantity, the solutio
directly related to the stress and strain field of a hollow sph
under internal pressure, for details see, e.g., Lubliner@8# chapter
4.3.2.

The following aspects must be taken into account when dea
with a growing spherical inclusion instead of a fixed spheri
inclusion:

• An incremental concept must be followed with respect to
development of the plastic strain and the plastic work.

• Under the assumption of pure radial loading, the increme
and deformation theories of plasticity are identical. If no unloa
ing occurs, the solution offered in the literature for a fixed rad
R can be used, as can be seen by an argument by Budiansk@9#.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, Feb. 14, 2000. Associate Technical Editor: M.-J. Pind
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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However, with respect to the total plastic work it must be cons
ered that also the material inside the sphere, 0<r<R(t), has
plastified.

• The growth process can also be modeled by a sequenc
elastic hollow spheres, see Franciosi et al.@10#, introducing a cer-
tain scaling factor, however, with much more computational eff
than below.

The main goal of this paper is to provide the researcher in
field of phase transformations in an elastic-plastic material wit
full and comprehensive set of relations for the strain and str
state as well as energy terms relevant for the understanding o
growth process.

2 Analysis

2.1 Strain, Stress, and Energy Terms. We solve now the
problem of a sphere subjected to a dilational eigenstrain and
bedded in an elastic-plastic space. Since we think of phase tr
formations,«o is mostly on the order of some few percents, a
thus we apply the infinitesmal deformation theory.

We introduce a stress vectorsT5(s r ,sw ,su), where the su-
perscript T stands for ‘‘transposed,’’ a strain vector«T

5(« r ,«w ,«u), the three vectorseT5(1,1,1), ẽT5(0,1,1), eMT

5(2,21,21), the unity matrixI ~I i j 5d i j , Kronecker delta! and
the matrixJ, Ji j 51. The yield stress iss f . Linear hardening is
described byEp , being the plastic tangent modulus, and a ha
ening factorf 5112(12n)Ep /E. If not explicitly mentioned an
elastic-ideally plastic material withf 51 is assumed.

The strain vector is decomposed into an elastic part«e , a plas-
tic part «p , and within 0<r<R a transformation part«* 5«oe.
Due to Hooke’s law«e can be written as

E«e5@~11n!I2nJ#•s. (1)

Since a hydrostatic load stressso does not introduce any stres
deviator component, the following results can be superposed
the corresponding elastic solution forso .

An explicit relation forRp , the radius of the outer boundary o
the plastic zone, can be found as

Rp

R
5S E«o

~12n!s f
D 1/3

5k1/3, (2)

see, e.g., Fischer et al.@7# or Böhm et al.@11#.
Of course, sinceRp>R, the limit condition for plastification

ensures that the plasticity constant is greater than or equal to
Three different zones can be distinguished with respect to

stress states and the corresponding strain components~«e is di-
rectly calculated by applying Hooke’s law!:
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li-
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Fig. 1 Profile of the relative radial stress zs r Õs f z and the relative plastic strain
z«p ,r Õ«o z in relation to r ÕR for two values of k
e

n

b

ring

c

• The inner elastic zone 0<r<R(t):

s52
2s f

3
~11 ln k!e, (3a)

E«e52~122n!
2sf

3
~11ln k!e, (3b)

«p50, «* 5«oe.

• The elastic-plastic zoneR(t)<r<Rp(t):

s52
2s f

3
e2

2s f

3 F ln k2ln S r

RD3Ge1s f ẽ, (3c)

E«e52~122n!
2s f

3 F ln k2ln S r

RD3Ge2
~11n!

3
s feM,

(3d)

«p52F S R

r D 3

2
1

kG«oeM. (3e)

• The outer elastic zoneRp<r<`:

s52
s f

3
kS R

r D 3

eM, (3f)

E«e52~11n!
s f

3
kS R

r D 3

e5 , (3g)

«p50.

Figure 1 demonstrates profiles for the relative radial str
us r /s f u and the relative radial plastic strainu«p,r /«ou in relation
to the dimensionless radiusr /R for two values ofk.

The plastic strain attains a maximum value of«p,max52@1
21/k#«oeM at r 5R.

It is important to note that the inner zone 0<r<R(t) which
behaves elastically, has achieved a plastic strain in the amou
«p52@121/k#«oeM during the growth process fromR50 to its
actual value. This means that no jump of the plastic strain at
interfacer 5R(t) can be observed, see~3e!.

Due to spherical symmetry the total strain components are« r

5]u/]r and«w5«u5u/r , which means that due to the compa
ibility «w and«u must be continuous. The condition can easily
verified with the above relations. Therefore, the radial displa
mentuuR can be calculated from«w at r 5R, ~3b!, as
BER 2000
ss

t of

the

t-
e

ce-

uuR52~122n!
2s f

3E
~ ln k11!R1«oR

5
s f

E
RF ~12n!k2

2~122n!

3
~ ln k11!G . (3h)

The strain energy densityU851/2sT
•«e can be calculated for

the three regions as follows:

• The inner elastic zone 0<r<R(t):

U85
2~122n!

3
•

sf
2

E
•~11ln k!2. (4a)

• The elastic-plastic zoneR(t)<r<Rp(t):

U85
2~122n!

3
•

sf
2

E
•Fln k2ln S r

RD3G21 ~11n!

3

sf
2

E
. (4b)

• The outer elastic zoneRp<r<`:

U85
~11n!

3
•

sf
2

E
•k2SRr D

6

. (4c)

Note the jump in the specific strain energy atr 5R(t)!
We can now calculate the total strain energy produced du

the growth of the inclusion from the origin to a certain radiusR.
Employing (4a) – (4c) yields after some integration

U5E
0

`

U84r 2pdr5
s f

2

E
•

4R3p

3
•~12n!~2k21!. (5)

The incrementdWp8 of the specific plastic work in the plasti
zone follows as

dWp85sT
•d«p , (6a)

and with ~3c! and ~3e!

dWp85H 2
2s f

3 F ln k2 ln S r

RD 3GeT2
s f

3
eM TJ •S 2

3R2

r 3 «oeMDdR

5
6R2

r 3 «os fdR56~12n!•
s f

2

E
•k•

R2

r 3 dR. (6b)

The total increment of plastic workdWp then follows as
Transactions of the ASME
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Fig. 2 Plastic work WP in relation to total work WT , total work WT in rela-
tion to total work WT

c in a purely elastic comparison material, dimensionless
transformation barrier FB,int . „EÕs f

2
… as function of the plasticity constant k.
n

d-
for-

d
a

e
in

one
the
dWp5E
R

Rp

dWp84r 2pdr58~12n!•
s f

2

E
•k ln k•R2pdR,

(6c)

and total plastic workWp done during the growth of the inclusio
from the origin to a certain radiusR becomes

Wp5
s f

2

E
•

4R3p

3
•2~12n!k ln k. (6d)

Böhm et al.@11# pointed out that Lee et al.@6# reported a different
result, namely W̃p5s f

2/E•4R3p/3•2(12n)k@ ln k2(121/k)#.
They did not consider a growing inclusion and had, therefore,
plastic work in the region 0<r<R.

We can now compare the total mechanical energyWT produced
during generation of an inclusion with the radiusR,

WT5U1Wp5
s f

2

E
•

4R3p

3
•~12n!~2k ln k12k21!, (7)

with the amount of total mechanical energyWT
c which would

occur in a purely elastic material. We can use the results fr
Fischer et al.@7# leading to

• the inner elastic zone 0<r<R(t):

s52
2

3~12n!
«oEe, E«e52

2~122n!

3~12n!
«oEe, «* 5«oe,

(8a)

UT85
2

3

~122n!

~12n!2 «o
2E; (8b)

• the outer elastic zoneR(t)<r<`:

s52
1

3~12n!
«oES R

r D 3

eM, E«e52
~11n!

3~12n!
«oES R

r D 3

eM,

(8c)

UT85
~11n!

3~12n!2 «o
2ESRr D

6

, (8d)

WT
c5E

0

`

UT8 4r2pdr5
«o

2E

~12n!
•

4R3p

3
. (8e)
anics
no

om

The ratiosWT /WT
c

WT /WT
c5

2k ln k12k21

k2 (9a)

andWp /WT
c

Wp /WT5
2k ln k

2k ln k12k21
(9b)

are depicted in Fig. 2.
WT /WT

c possesses a maximum of 1.456 atk51.763 and
reaches the value 1 atk55.03.

For values ofk.5.03 the ratioWT /WT
c tends to be smaller than

1, going to 0 ask goes to infinity. The conclusion is that depen
ing onk an elastic-plastic body may consume more or less de
mation energy compared with a purely elastic body.

Earmme et al.@12# offered also a solution for the stress an
strain field around a spherical inclusion with fixed radius in
hardening material. Carrol@13# investigated independently som
further types of hardening laws. In particular, for linear stra
hardening it is interesting to note that the size of the plastic z
remains unaffected by the hardening. Taking into account
hardening factorf 5112(12n)Ep /E and denoting the solution
for no hardening,f 51, ~see~3a–g!! assn ,«e,n , etc., the follow-
ing relations can be derived at the interface:

• The inner elastic zone atr 5R(t)

s5
1

f
sn2

2s f

3 f
•2Ep /E•~12n!ke, (10a)

E«e5
E

f
«e,n2

2s f

3 f
•2Ep /E•~122n!~12n!ke, (10b)

U85
1

f 2 HUn818
sf

2

3E
•Ep /E•~122n!

3~12n!•@11ln k1Ep /E~12n!k#J. (10c)
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• The elastic-plastic zone atr 5R(t)

s5
1

f
sn2

2s f

3 f
•2Ep /E•~12n!keM, (10d)

E«e5
E

f
«e,n2

2s f

3 f
•Ep /E•~12n!~11n!keM, (10e)

U85
1

f 2 HUn814
sf

2

3E
•Ep /E•~11n!~12n!•@k1Ep /E•~12n!k2#J.

(10f)

2.2 Thermodynamics of Interface Motion. If one wants to
calculate the thermodynamic force on the interfacer 5R(t), its
mechanical contributionFM can be calculated as the normal com
ponent of the Eshelby energy momentum tensor, see, e.g., Fis
and Reisner@14# Eq. ~26!. With v.b denoting the jump of a quan
tity and ^.& the average of a quantity at the interfacer 5R(t), one
gets

FM5vU8b2^sT&•v«b. (11a)

The jump in strain energyvU8b can be reformulated with the
identity vaT

•bb5^aT&•vbb1vaTb•^b& as

vU8b5
1

2
^sT&•v«eb1

1

2
vsTb•^«e&5^sT&•v«eb (11b)

due to^sT&v«eb5^«e
T&vsb .

v«b is v«eb2«oe, since no jump in the plastic strain«p occurs at
the interface. Insertingv«b and ~11b! into ~11a! yields

FM5«o^sT&•e. (11c)

If one introduces an additional load stressso , FM finally yields

FM53so«o2«o

s f

f
@~112 ln k!12Ep /E•~12n!k#.

(11d)

The contributionFM53so«o may be positive or negative de
pending on the sign ofso . The second part ofFM can be consid-
ered as a barrier~due to its sign!,

FB, int5
s f

2

E
•

~12n!k

f
@~112 ln k!12Ep /E•~12n!k#,

(11e)

due to the generation of the strain and stress by the accomm
tion of the transformation volume strain«oe. The quantityFB, int is
depicted in Fig. 2. Only a rather weak influence ofEp /E can be
observed.

The total mechanical driving forceFD follows by adding the
jump of the chemical free energyvrwchb to FM . As a further
barrier the energy necessary to rebuild the lattice,FL , as well as
to form a new surface,g/R,g specific surface energy, must b
considered for the energy balance at the interface.

Finally, a driving forceFD

FD5vrwchb13so«o (11f)

and a barrierFB with ~11e!

FB5FB, int1FL1g/R (11g)

can be derived.
The interface velocityv can then be formulated as a functio
796 Õ Vol. 67, DECEMBER 2000
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v5f~FD /FB! for FD /FB>1, else 0 (11h)

see, e.g., Rosakis and Knowles@15#.

2.3 Remark. Recently Durban and Fleck@16# presented a
solution for an expanding spherical cavity in a Drucker-Pra
material with the yield condition

su2s r1
m

3
sT

•e5s f , (12)

wherem is a pressure sensitivity material parameter.
Surprisingly their solution forRp , see~2!, and s cannot be

reduced to the solution~3a!–~3g! for m50. Theirs in the plastic
zone leads to a constant stress vector form50 which contradicts
the variation ofs with r given in relation~3c!.

3 Closing Comments
A full set of analytical expressions is given for the deformatio

strain and stress state due to the dilatational growth of a sphe
inclusion in an elastic-plastic material. The solutions can also
applied for a spherical cavity with the pressurep̃52s f /3•(1
1 ln k) at the cavity surface. In addition the dissipated plas
work as well as the thermodynamic force on the transformat
front are presented. The set of equations allows further me
physical considerations with respect to the nucleation and gro
of precipitations in an elastic-plastic material.
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On Symmetrizable Systems
of Second Kind
We discuss under what conditions multiple-parameter asymmetric linear dynamica
tems can be transformed into equivalent symmetric systems by nonsingular linear
formations. So far, in structural dynamics literature this problem has been address
the context of the original work by Taussky. Taussky’s approach of symmetrization
based on similarity transformation. In this paper an approach is proposed to transf
asymmetric systems into symmetric systems by equivalence transformation. W
Taussky’s approach of symmetrization by similarity transformation ‘‘first kind’’ and p
posed approach by equivalence transformation ‘‘second kind.’’ Since equivalence t
formations are most general nonsingular linear transformations, conditions of symm
zability obtained here are more ‘‘liberal’’ than the first kind and numerical calculatio
also become more straightforward. Several examples are provided to illustrate the
approach.@S0021-8936~00!00504-3#
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1 Introduction
Theory of linear dynamics of multiple parameter symmet

systems is well developed now. However, dynamical behavio
some systems encountered in practice cannot be express
terms of symmetric coefficient matrices or self-adjoint linear o
erators. Some examples are gyroscopic and circulatory sys
~@1#!, aircraft flutter~@2#!, ship motion in sea water~@3#!, contact
problems~@4#!, and many actively controlled systems~@5#!. Few
authors have considered such general asymmetric dynamical
tems. Fawzy and Bishop@6# presented several relationships sat
fied by the eigenvectors and ‘‘eigenrows’’ of a damped asymm
ric system and also presented a method to normalize th
Caughey and Ma@5# have derived conditions under which suc
systems can be diagonalized by asimilarity transformation.In a
subsequent paper Ma and Caughey@7# utilized equivalence trans-
formation to analyze asymmetric nonconservative systems
gave the condition under which they can be diagonalized.
cently Adhikari@8# proposed a method to obtain~complex! eigen-
solutions of general asymmetric nonconservative systems wit
converting the equations of motion into first-order form.

The above-mentioned works have certainly enhanced the po
of modal analysis in dealing with asymmetric systems. Howev
asymmetric systems are still not as well understood as symm
systems. For example, rightly pointed out by Kliem@9#, stability
investigations become substantially easier if the system matr
are symmetric. Without doubt, it would be preferable if asymm
ric systems can be transformed into equivalent symmetric syst
so that one can take advantage of the well-developed theorie
symmetric systems to analyze them. This is the primary reaso
study ‘‘symmetrizability’’ of asymmetric systems. In linear dy
namics literature symmetrizability has been addressed bysimilar-
ity transformationbased on Taussky’s@10# definition. We call
Taussky’s approach of symmetrization by similarity transform
tion as ‘‘symmetrization of first kind.’’ In this paper symmetriz
ability of a matrix is redefined in the context ofequivalence trans-
formation. Such symmetrization will be called ‘‘symmetrizatio
of second kind.’’

Equivalence transformations are the most general class of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
21, 1999; final revision, May 2, 2000. Associate Technical Editor: A. A. Fe
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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singular linear transformations. This motivates us to utili
equivalence transformation rather than similarity transformat
for symmetrization of asymmetric systems. It will be shown th
much generality can be achieved by using symmetrization of
second kind compared to the first kind. Notations and definitio
of some terminologies frequently used in this paper are given
Section 2. Taussky’s version of symmetrization and a brief rev
of the literature on its applications in structural dynamics is p
sented in Section 3. In Section 4 we formally define the symm
trization of the second kind. For the sake of generality, some b
results on such symmetrization are presented on complex m
ces. Numerical methods are outlined to carry out such a sym
trization procedure. In view of the undamped and damped
namical systems, simultaneous symmetrization of two and th
matrices are considered in Section 5 and Section 6, respecti
Finally, Section 7 summarizes the main results of this paper
some suggestions towards further research required to suc
fully apply this new approach is provided. Throughout the pa
suitable numerical examples are provided to illustrate the deri
results.

2 Notations, Basic Concepts, and Definitions

By RN3N we mean the space ofN3N real matrices andCN3N

stands for the space ofN3N complex matrices. AnN3N matrix
taken from either real or complex number field will be denoted
FN3N. A matrix A is called positive definite if all of its eigenval
uesl i.0 and will be denoted byA.0. A unit matrixIPRN3N is
a diagonal matrix with all diagonal entries equal to one. LetA
PCN3N, then we denoteAT, Ā, A21, A2T, andA* be the trans-
pose, complex conjugate, inverse, inverse transposed, and t
posed conjugate. A matrixA is calledsymmetricif A5AT, Her-
mitian if A5A* , and unitary if AA*5I . If A is real then a
Hermitian matrix is equivalent to a symmetric matrix and a u
tary matrix is equivalent to a real orthogonal matrix asAAT5I .
For a matrixA, by sayingA21 exists we mean none of its eigen
values is equal to 0 and thatA is nonsingular. Two matrices,A
andB, related byB5VTAU for some nonzeroU andV, are called
an equivalence transformation.WhenVT5U21, the equivalence
transformation is called thesimilarity transformationand we call
A andB similar. In the eventV5U the equivalence transforma
tion is acongruence transformation.Classical modal transforma
tion in symmetric systems is an example of congruence trans
mation. WhenVT5U215UT, we call such transformation the
orthogonal transformation.Further, if VT5V21 and UT5U21,
such transformation is called thebiorthogonal transformation.A
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matrix A is said to bediagonalizableif it is similar to a diagonal
matrix and that diagonal matrix contains all the eigenvalues oA
with proper multiplicities. A matrix is diagonalizable if and onl
if it has N linearly independent eigenvectors.

3 Symmetrizability of the First Kind
The concept of symmetrizability of an asymmetric matrix w

originated from an excellent result by Taussky and Zassenh
@11# which says ‘‘for everyAPFN3N there is a non-singular sym
metric matrix transformingA into its transpose.’’ Based on thi
general result it was shown that every real square matrix can
expressed as a product of two real symmetric matrices, that

A5S1S2 ; Si5Si
TPRN3N, (3.1)

always holds. Later Taussky@10# proved that if one of the factors
in this representation is positive definite thenA can be trans-
formed into a symmetric matrix by a similarity transformation a
vice versa. She formally definedsymmetrizabilityof a matrix as
the following:
DEFINITION 1. A matrixA is symmetrizable if and only if any on
of the following hold:

1 A is the product of two symmetric matrices, one of which
positive definite;

2 A is similar to a symmetric matrix;
3 AT5S21AS with S5ST.0; and
4 A has real characteristic roots and a full set of characteri

vectors.

Huseyin and Liepholz@1# were possibly first to recognize th
importance of Taussky’s result in the context of structural dyna
ics. However, symmetrization was not properly exploited unti
decade later when Inman’s@12# paper appeared. Inman’s wor
inspired several authors to consider the dynamics of symme
able asymmetric systems. Subsequent works by Ahmadian
Inman @13,14#, Ahmadian and Chou@15#, Shahruz and Ma@16#,
and Cherng and Abdelhamid@17# made significant contributions
and symmetrization of the first kind is much better understo
now. Next, a more general approach for symmetrization
proposed.

4 Symmetrizability of the Second Kind

4.1 Definition. Now we will introduce a new definition of
symmetrizability by utilizing equivalence transformation.
DEFINITION 2. A matrixA is symmetrizable of the second kind
and only if there exist two nonzero matricesL and R such that
Ã5LTAR is a symmetric matrix.

This definition of symmetrizability is quite general and val
for both real and complex matrices. It also holds Taussky’s d
nition as a special case whenLT5R215R2T. In the above defi-
nition, evenA is realL andR might be complex in order to mak
Ã symmetric. For anyA, whenL andR are real matrices we cal
suchA real symmetrizableand complex symmetrizablewhen L
and R are complex. Taussky@18# and Pommer and Kliem@19#
have discussed complex symmetrizable matrices in the conte
a similarity transformation. Applications of such complex symm
trizability in linear dynamical systems were given by Kliem@9#.

4.2 Basic Results. Some basic results on symmetrizabili
of the second kind and a numerical method to carry out suc
symmetrization procedure will be developed. In order to achi
more generality, one of our main results is presented
nonsquare complex matrices in the following theorem:
THEOREM 4.1.Every rectangular complex matrixAPCr 3s can be
transformed to a real symmetric (square) matrix by an equi
lence transformation.

Proof. We use a result by Eckrat and Young~@20#, Theorem 1!
which states thatfor everyAPCr 3s there are two unitary matrices
XPCr 3r and YPCs3s such thatD5X* AY is a diagonal matrix
798 Õ Vol. 67, DECEMBER 2000
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with real elements, none of which are negative.If rank(A)5k,
then Williamson @21# has shown thatD5@02

L
03

01# where L

5diag(l1,¯ ,lk) is a real diagonal matrix and01 , 02 , and03 are
(k,s2k), (r 2k,k), and (r 2k,s2k) null matrices. Without loss
of generality we selectL5X̄Q1 and R5YQ2 for some nonzero

Q1PRr 3n andQ2PRs3n such thatQ15@Q
2
1

Q

Q
3
1

Q1
1

# andQ25@Q
2
2

Q

Q
3
2

Q1
2

#

whereQPRk3k andQj
i , i 51,2; j 51,2,3 are all real matrices o

proper orders. Using these, one hasÃ5LTAR5Q1
TX* AYQ2

5Q1
TDQ25@ 0̃2

QTLQ

03

0̃1#PRn3n where0̃j ; j 51,2,3 are all null ma-

trices with proper orders. SoÃ is real symmetric matrix and this
completes the proof. h

Remark 4.1.The two matricesQ1 andQ2 utilized above can be
selected in such a way that the symmetric form becomes non
gular and has the same rank asA. Observe that becauseD is a
diagonal matrix with non-negative real elements,Q1 andQ2 can
also be selected in a way such that the symmetric form beco
positive definitive. The symmetric form ofA is, however, not
unique becauseQ1 andQ2 can be chosen in several ways.

This result clearly demonstrates the generality of the symme
zation of the second kind compared to the first kind which can
be applied to rectangular matrices. Of course, Theorem 4.
applicable for real matrices as a special case. WhenA is a real
matrix we have the following interesting special result:
THEOREM 4.2. Every real matrixA is real symmetrizable of the
second kind.

Proof. We use a result by Pearl~@22#, Theorem 1!. This gives
the condition under which the unitary matrices which reduces
matrix A to a real diagonal form by an equivalence transformat
in Eckrat and Young’s theorem are real orthogonal matrices.
cording to this result,for APCr 3s there are two real orthogonal
matricesO1PRr 3r and O2PRs3s such thatD5O1* AO2 is a di-
agonal matrix with real non-negative elements if and only ifAA*
and A* A are both real matrices.The theorem is proved sinc
~trivially ! this condition is always satisfied whenA is real. h

We have described two important results on symmetrization
the second kind. From a practical point of view the obvious qu
tion is, for a given matrixA, how to calculateL and R so that
Ã5LTAR is a real symmetric matrix? In answer to this questio
we observe that the proof given by Eckrat and Young@20# of their
theorem described previously can be used for obtainingL andR.
For computational purposes the following steps may be follow
to transform a general complex matrixAPCr 3s to a nonsingular
real square matrix using an equivalence transformation.

1 Calculate the matrixM5AA* PCr 3r . Solve the eigenvalue
problem Mxi5l i

2xi , ; i 51,¯r . Since M is a non-negative
Hermitian its eigenvector matrix can be normalized to a unit
matrix. Suppose rank(A)5k, arrange the numbering of the eigen
values so thatl1>l2>¯>lk.0; lk115¯5l r50. Denote
X5@x1 ,x2 , ¯ ,xk#PCr 3k as the ordered collection of the eigen
vectors.

2 Evaluateyi5A* xi /l i , ; i 51,¯k. Set Y5@y1y2 , ¯ ,yk#
PCs3k.

3 Consider any nonzeroQPRk3k and obtainL5X̄QPCr 3k

andR5YQPCs3k. Finally check thatÃ5LTAR is a (k3k) real
nonsingular symmetric matrix.

For the sake of generality the method is proposed for rectan
lar complex matrices. This procedure is obviously applicable
real square matrices we normally encounter in the equation
motion of linear systems. WhenA is real, M becomes a rea
symmetric matrix and consequentlyX, Y, L , and R all become
real matrices. For a further special case, whenA is a symmetriz-
able matrix of first kind, this procedure provides an alternat
and easy way to find symmetric forms as the calculation
Taussky’s factorization can be avoided.
Transactions of the ASME
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Example 4.1. The procedure outlined above can be illustrat
by the following rectangular complex matrix:

A5F 1.013.0i 22.011.0i 1.522.0i

22.023.0i 6.012.0i 7.012.0i G . (4.1)

Step 1: We calculateM5AA* 5@214.50110.00i
21.25

106.00
214.50210.00i #.

Solving the eigenvalue problemMxi5l i
2xi and arranging

accordingly one has l i
25$109.5150, 17.7350% and X

5@ 0.9807
20.161120.1111i

0.161120.1111i
0.9807 #. Note that rank(A)52.

Step 2: Calculating one obtains

Y5F 20.234710.3167i 0.235520.5311i

0.582420.1508i 20.289020.4677i

0.654120.2341i 0.564310.2045i
G .

Step 3: Now arbitrarily select the matrixQ5@1.4109
0.1021

0.3519
0.2605# so

that L5X̄Q5@0.327410.1568i
1.367210.0113i

0.312110.0391i
0.303110.0289i # and

R5YQ5F 0.308320.7170i 0.021820.1044i

20.348320.6752i 0.050020.2039i

0.863010.2647i 0.369010.0110i
G .

Using thisL andR one hasÃ5LTAR5@2.3692
8.4923

1.2315
2.3692#, which is a

real nonsingular symmetric matrix.

Example 4.2. Consider a real asymmetric matrix

A5F 1.0 22.0 1.5

12.0 6.0 7.0

22.0 4.0 9.0
G . (4.2)

Observe that rank(A)53. Selecting the matrix

Q5F 0.0645 20.1647 0.1436

20.8923 0.2226 0.6155

0.1611 0.2298 0.3708
G (4.3)

and following the procedure described previously we obtain

L5F 0.1735 0.2198 0.3701

0.3901 20.2469 20.1170

20.8026 0.1421 0.6215
G

and (4.4)

R5F 0.7299 20.2298 20.2942

20.2638 20.2377 20.1620

20.4733 0.1419 0.6513
G

and both are real matrices. From these one has

Ã5LTAR5F 7.0392 21.7960 24.4600

21.7960 1.0004 1.0316

24.4600 1.0316 3.9722
G

a real nonsingular symmetric matrix. Interestingly, note t
eig(A)5$12.8914, 1.554315.0507i , 1.554325.0507i %, i.e., A
does not satisfy Taussky’s condition of symmetrizability~Defini-
tion 1!. Thus A in ~4.2! is a real symmetrizable matrix of th
second kind but not a real symmetrizable of the first kind. T
illustrates generality of the proposed approach of symmetriza
compared to the conventional approach.

Because the coefficient matrices in the equations of mo
of linear vibrations are real we next consider only real squ
matrices.
Journal of Applied Mechanics
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5 Simultaneous Symmetrization of Two Matrices
Equations of motion of a linear undamped~nongyroscopic! sys-

tem can be expressed by

Aẍ~ t !1Bx~ t !50, t.0, (5.1)

whereAPRN3N andBPRN3N andx(t)PRN is the vector of the
generalized coordinates.Were A and B symmetric and positive
definite matrices they would, respectively, represent the mass
stiffness matrices. Here, however, no such restrictions are
posed onA and B. Huseyin @23# has shown that the traditiona
modal analysis, originally developed for symmetric systems,
be extended to solve Eq.~5.1!. There existright eigenvectorsor
normal modesand left eigenvectorsor adjoint modeswhich un-
couple the equations of motion intoN single-degree-of-freedom
oscillators. Although system~5.1! can always be solved usin
normal modes and adjoint modes, it would be more useful if it c
be transformed to a symmetric system. We consider the follow
two cases to investigate symmetrizability of system~5.1!.

5.1 Case 1: A and B Have Real Roots and A is Nonsingu
lar. This is the most common case we encounter in practice
system~5.1! is ‘‘truly’’ undamped thenA or B does not posses
any complex roots because, otherwise a stable system will
have periodic motion for an infinitely long time but vibration~in
some degrees-of-freedom! will decay due to the complex natur
of the eigenvalues. AsA is nonsingular, rewriting Eq.~5.1! one
has

Iẍ1Ex50 (5.2)

whereE5A21BPRN3N has real roots as bothA andB have real
roots. Because this matrix satisfies Condition 4 of Taussky’s d
nition of symmetrizability, system~5.2! can be transformed to a
symmetric system by a similarity transformation. From this d
cussion we have the following interesting result:
THEOREM 5.1. All asymmetric undamped systems are similar
symmetric undamped systems.

Practical implementation of Taussky’s factorization~3.1! is not
straightforward~see Ahmadian and Chou,@15#, Shahruz and Ma
@16#, and Cherng and Abdelhamid@17#!. For this reason it is re-
quired to develop efficient numerical methods for finding asso
ated symmetric form~s! of system~5.1!. Recall that as system
~5.1! is symmetrizable of the first kind it is also symmetrizable
the second kind. We use the latter approach to avoid the calc
tion of Taussky’s factorization.

It has been mentioned that there always exist two matriceU
PRN3N ~normal modal matrix! andVPRN3N ~adjoint modal ma-
trix! such thatVTAU andVTBU are both real diagonal matrices
Numerical methods for obtainingU andV are well developed~see
Huseyin @23# and Ma and Caughey@7# for further discussions!.
SelectL5VQ andR5UQ for some nonzeroQPRN3N. Clearly
LTAR and LTBR are both symmetric matrices now. This a
proach is much easier for finding symmetric forms than the
proach via Taussky’s factorization. Also note that symmet
forms are nonunique since one can select the matrixQ in many
ways. The following example demonstrates this procedure.

Example 5.1. Suppose the coefficient matrices of an u
damped system of the form~5.1! are given by

A5F 0.5740 1.3858 1.3858

0.7070 0.7070 20.7070

0.4620 20.1914 20.1914
G

and

B5F 1.3748 10.9440 25.2975

1.2625 2.8770 217.4195

0.7455 24.1244 0.8625
G . (5.3)
DECEMBER 2000, Vol. 67 Õ 799



r

f
-

f

t

ndi-

is

is-

e
itive
s,

now
al
n-

ies
of
Numerical values ofA andB are taken from Ma and Caughey@7#.
It may be verified thatA, B and consequentlyE5A21B are sym-
metrizable matrices of first kind.

Solving the right and left eigenvalue problemsBU5LAU and
VTB5LVTA we obtain the undamped modal matrices

U5F 0.9996 20.5434 0.3951

20.0271 0.8391 20.4850

20.0044 20.0253 0.7802
G

and

V5F 0.2868 0.4247 0.4617

0.4677 0.2613 20.7124

0.8361 20.8668 0.5285
G (5.4)

and the natural frequencies squared diag(L)5$1.8241, 9.5561,
23.5486%. Selecting the matrixQ given by ~4.3! one obtains

L5VQ5F 20.2860 0.1534 0.4737

20.3177 20.1826 20.0362

0.9126 20.2092 20.2176
G

and

R5UQ5F 0.6131 20.1948 20.0445

20.8286 0.0798 0.3328

0.1480 0.1744 0.2731
G . (5.5)

Using these matrices we have

Ã5LTAR5F 0.6282 20.1303 20.3608

20.1303 0.1032 0.1514

20.3608 0.1514 0.4150
G

and

B̃5LTBR5F 6.2653 20.7600 22.8429

20.7600 1.3947 2.5574

22.8429 2.5574 5.3631
G . (5.6)

Above is a symmetric form of the asymmetric system~5.3!. Note
that symmetric form of this system can also be obtained alte
tively by calculating Taussky’s factorization ofE.

5.2 Case 2: A and B Are General Matrices. We have
shown that whenA and B have real roots, system~5.1! has an
equivalent symmetric form via real linear transformations. Ho
ever, if these matrices have complex roots, the matrixE in Eq.
~5.2! in general does not satisfy Taussky’s definition of symm
trizability. In that case, can system~5.1! be transformed to a rea
symmetric system using a real linear transformation? Our ans
is the following:
LEMMA 5.2. Linear undamped system~5.1! is real symmetriz-
able if ATB and BAT are symmetric matrices.

Proof. According to Thompson@24# ‘‘there exist two real or-
thogonal matricesO1PRN3N and O2PRN3N such that square
matricesO1

TAO25La and O1
TBO25Lb are diagonal matrices i

and only if ATB and BAT are symmetric matrices.’’ Now con
structL5O1Q andR5O2Q for some nonzeroQPRN3N. Using
these we haveLTAR5QTLaQ and LTBR5QTLbQ are both
symmetric matrices. This completes the proof. h

This result provides only asufficientcondition for simultaneous
real symmetrizability of the general matricesA andB. Lack of it
does not necessarily preclude existence of a real symmetric
of system~5.1!. The following examples illustrates this fact.

Example 5.2. Consider an undamped system withA same as
Example 4.2 and
800 Õ Vol. 67, DECEMBER 2000
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B5F 1.2044 25.4425 2.7013

2.1007 0.8393 0.1894

21.8393 0.8953 2.5087
G . (5.7)

One may verify thatA and B are not symmetrizable of the firs
kind. Observe that the matrices

ATB5F 30.0910 2.8380 20.0427

2.8380 19.5018 5.7688

20.0427 5.7688 27.9563
G

and

BAT5F 16.1414 0.7063 0.1331

0.7063 31.5697 0.8607

0.1331 0.8607 29.8380
G

are both symmetric. Since the system matrices satisfy the co
tion of Lemma 5.2 the transforming matricesL andR ~computed
before in Eq.~4.4!! which symmetriesA also symmetriesB as

LTBR5F 2.8766 20.4670 21.4786

20.4670 0.5501 0.9468

21.4786 0.9468 2.1818
G

is a symmetric matrix.

Example 5.3. Consider another undamped system withA in
the above example and

B5F 0.1955 1.8857 23.2199

22.1312 20.2236 0.3609

1.0378 1.9501 21.5606
G . (5.8)

Observe that the matrices

ATB5F 227.4545 24.6975 4.2325

29.0269 2.6874 2.3629

25.2845 18.8142 216.3493
G

and

BAT5F 28.4058 28.8789 221.8278

21.1426 224.3894 6.6164

25.2033 13.2300 28.3212
G

are not symmetric. However, the transforming matricesL andR
obtained in Eq.~4.2! and also the symmetriesB as

LTBR5F 21.2355 0.8082 1.2380

0.8082 20.4868 20.9953

1.2380 20.9953 22.0335
G

is a symmetric matrix. So the condition outlined in Lemma 5.2
only sufficient.

6 Simultaneous Symmetrization of Three Matrices
The equations of motion describing free vibration of a v

cously damped linear system can be expressed by

Aẍ~ t !1Cẍ~ t !1Bx~ t !50, t.0. (6.1)

We assumeA, B, andC areN3N arrays of real numbers but ar
otherwise general. Were these matrices symmetric and pos
definite,A, B, andC would, respectively, be the mass, stiffnes
and viscous damping matrices. The equations of motion are
characterized bythree real matrices and this brings an addition
complication in the system dynamics. It is required to find a no
singular linear transformation which simultaneously symmetr
A, B, andC. Unlike the undamped case, where in the absence
Transactions of the ASME
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the C matrix conditions for obtaining such a transformation we
easy to meet~Theorem 5.1!, admissible forms of these matrice
gets restricted here. We will investigate what forms of restrictio
should be imposed on the system matrices so that the equatio
motion can be transformed into a symmetric form. The followi
two cases are considered here.

6.1 Case 1: A is Nonsingular and All the Matrices Have
Real Roots. WhenA is nonsingular, Eq.~6.1! can be rewritten
as

Iẍ ~ t !1Fẋ~ t !1Ex~ t !50. (6.2)

whereE5A21BPRN3N andF5A21CPRN3N. SinceA, B, and
C have real rootsE andF also have real roots. ThusE andF are
individually symmetrizable of the first kind. But this does n
imply that system~6.2! is also symmetrizable, unlessI , E, andF
are simultaneously symmetrizable. A basic result in this regar
the following:
THEOREM 6.1. All diagonalizable damped asymmetric syste
are similar to symmetric systems.
It is well known that system~6.2! is diagonalizable by a similarity
transformation if and only ifE andF commutes in multiplication,
i.e., EF5FE. When this condition is satisfied the system is sy
metrizable of the first kind and hence also symmetrizable of
second kind. Following the approach outlined before in Sect
5.1, symmetric form~s! may be obtained by utilizing equivalenc
transformation to avoid the calculation of Taussky’s factorizati
A result similar to Theorem 6.1 was also established by Inm
~@12#, Theorem 1! and Shahruz and Ma~@16#, Theorem 3.1!. Note
that the opposite statement of the above theorem, i.e., ‘‘a dam
asymmetric system similar to a symmetric system is diagona
able’’ is in general not true. Thus, diagonalizability of a system
only a sufficient condition for symmetrizability and rather restr
tive. The following is a more stronger and liberal result:
THEOREM 6.2. ~Inman @12#, Theorem2! system~6.2! is symme-
trizable if and only ifE andF have a common symmetric positiv
definite factor.

From Taussky’s factorization~3.1! one can writeE5S1S2 , S1

5S1
T.0, S25S2

T andF5T1T2 , T15T1
T.0, T25T2

T . According
to the above theorem system~6.2! is symmetrizable if and only if
S15T1 . If this condition is satisfied Eq.~6.2! can be brought into
symmetric form using a similarity transformation involving asym-
metric matrix. For practical purposes this condition is difficult
check. A more convenient result is the following:
THEOREM 6.3. ~Kliem @9#, Theorem 1! system~6.2! is real sym-
metrizable if and only if there exist modal matricesUEPRN3N

and UFPRN3N ~consisting of full eigenvector sets ofE and F!
such thatUF

21UE is orthogonal, or equivalentlyUFUF
T5UEUE

T .
Further discussions on this theorem can found in Pommer

Kliem @19#. When the condition of the above theorem is satisfi
Eq. ~6.2! can be brought into symmetric form by a similari
transformation. In this case the symmetrizing matrix may be
nonzero matrix, unlike a symmetric matrix utilized in Theore
6.2. For this reason Kliem’s@9# condition is more liberal and
holds Inman’s@12# condition as a special case when the symm
trizing similarity transformation itself is a symmetric matrix. Thu
Theorem 6.2, and consequently results obtained by Ahmadian
Chou~@15#, Theorem 2! and Shahruz and Ma~@16#, Theorem 4.1!
based on this theorem are onlysufficientconditions for symmetri-
zation of the first kind of system~6.1!.

Now, symmetrizability of system~6.1! by means of the equiva
lence transformation will be introduced. Our main result is t
following:
THEOREM 6.4. System~6.1! is real symmetrizable of the secon
kind if and only if there existUPRN3N andVPRN3N, the matri-
ces of undamped right and left eigenvectors, such thatVTCU is
symmetric.

Proof. BecauseUPRN3N and VPRN3N are the matrices of
right and left eigenvectors of the generalized eigenvalue prob
Journal of Applied Mechanics
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involving A and B, VTAU5La and VTBU5Lb are both real
diagonal matrices. SelectL5VQ andR5UQ, whereQPRN3N is
nonzero. ClearlyLTAR5QTLaQ and LTBR5QTLbQ are both
real symmetric matrices. Using this transformation, the sec
term of Eq.~6.1! is now LTCR5QT(VTCU)Q. Thus the trans-
formed system is symmetric if and only ifVTCU is a symmetric
matrix. h

Since the equivalence transformations are more general
similarity transformations it is expected that the condition of sy
metrizability given by this theorem is less restrictive than the th
previously established results discussed before. The following
ample illustrates this fact:
Example 6.1. Suppose, for a damped dynamic system,A andB
are as in Example 5.1 and

C5F 4.1429 9.4510 9.0014

4.6465 3.8206 23.2816

1.2006 0.5460 21.5001
G . (6.3)

Transforming the system in the form of Eq.~6.2! one may
verify that bothE and F are individually symmetrizable of the
first kind. However, none of the conditions of simultaneous sy
metrizability outlined in Theorems 6.1–6.3 is satisfied byE and
F. Now, using the modal matricesU and V calculated before in
Eq. ~5.4! we have

VTCU5F 4.2300 1.7900 20.8400

1.7900 26500 1.8900

20.8400 1.8900 3.2100
G

is a symmetric matrix, i.e., the condition of Theorem 6.4 is sa
fied. The transformation matricesL and R given by Eq. ~5.5!
which symmetriesA andB also symmetriesC as

LTCR5F 1.4439 20.4735 21.8602

20.4735 0.5412 0.8591

21.8602 0.8591 2.6222
G

is a symmetric matrix. Thus, the system under consideratio
real symmetrizable of the second kind but not the first kind.

6.2 Case 2: A, B, and C are General Real Matrices.
When the system matrices are general, some or all of them
have complex roots so that they do not satisfy Tausskkey’s c
dition of symmetrizability. For such systems, in general Kliem
result ~Theorem 6.3! gives the condition ofcomplex symmetriz-
ability of the first kind and Theorem 6.4 gives the condition
complex symmetrizability of the second kind. Asufficientcondi-
tion for real symmetrizability of such systems is the following:
LEMMA 6.5. System~6.1! is real symmetrizable of second kind
there existU and V, the matrices of undamped right and le
eigenvectors, such thatATB, BAT and VTCU are all symmetric
matrices.

This lemma can be proved easily following the results
Lemma 5.2 and Theorem 6.4. The example considered below
lustrates this result:

Example 6.2. Suppose, for a damped linear system,A andB
are given by Example 5.2 and

C5F 4.3160 22.5771 21.4626

2.7122 1.8365 20.1999

1.3827 22.5631 4.3419
G . (6.4)

One may easily verify that none of the system matrices are in
vidually real symmetrizable of the first kind. We compute t
undamped modal matrices
DECEMBER 2000, Vol. 67 Õ 801
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U5F 0.6498 0.7383 0.1807

0.4364 20.1676 20.8840

0.6224 20.6533 0.4311
G

and

V5F 0.0445 20.0108 0.990

0.9245 20.3784 20.0453

0.3785 0.9256 20.0068
G

and notice that

VTCU5F 3.2290 1.3664 0.6412

1.3664 22.0229 4.4962

0.6412 4.4962 2.5404
G

is a symmetric matrix. So all the conditions outlined in Lemm
6.5 are satisfied. Using the matrixQ given by ~4.3! one has

L5VQ5F 0.1735 0.2198 0.3701

0.3901 20.2469 20.1170

20.8026 0.1421 0.6215
G

and

R5UQ5F 20.5878 0.0988 0.6148

0.0353 20.3123 20.3683

0.6926 20.1489 20.1529
G .

These real matrices transform the system to a real symm
form.

7 Concluding Discussions and Further Research
A method of symmetrization of asymmetric linear dynamic

systems by means of equivalence transformation is introdu
This new method of symmetrization is called ‘‘symmetrization
the second kind’’ and the existing symmetrization method ba
on the similarity transformation is called ‘‘symmetrization of fir
kind.’’ Because the equivalence transformations are most gen
linear transformations, symmetrization of the second kind ho
that of the first kind as a special case and offers a general
method to obtain symmetric forms of finite dimensional asymm
ric linear systems.

Several results are provided on symmetrization of the sec
kind. We have discussed real and complex symmetrizability ba
on the nature of the symmetrizing matrices. It was proved t
every rectangular complex matrix is complex symmetrizable
the second kind to a real square matrix. It is possible to perfo
the symmetrization in such a way that the resulting symme
form becomes positive definite. As a special case it was sh
that all real matrices are real symmetrizable of the second k
These results are more general than symmetrizability of the
kind which cannot be applied to rectangular matrices. An e
numerical method is presented to calculate symmetric forms
general matrices. This method is much easier than calculating
symmetric form of the first kind using Taussky’s factorization.

In view of the undamped and damped dynamical systems,
have discussed simultaneous symmetrizability of two and th
real square matrices. It was shown that~truly! undamped asym-
metric systems are always real symmetrizable. The condition
real symmetrizability of general undamped systems is deriv
We also have given a condition for real symmetrizability of t
second kind for damped systems. Our result is more liberal t
the existing results and also much easier to check from a num
cal point view.
802 Õ Vol. 67, DECEMBER 2000
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Further research is required to successfully apply the concep
symmetrizability of the second kind in asymmetric linear dynam
cal systems. By an example it was shown that the condition
symmetrizability of a damped system given by Theorem 6.4
less restrictive than the existing results. A mathematical proo
establish this fact will be useful. Moreover, this condition is spe
tral ~i.e., an eigensolution calculation is required!, a nonspectral
condition which is more easy to check needs to be develop
Some of our results~Lemma 5.2 and Lemma 6.5! provide only
sufficient conditions for real symmetrizability of systems wi
general coefficient matrices. More stronger results are require
these directions. Further studies regarding stability of the sym
trizing transformations and the robustness of them with respec
perturbations in the entries of the coefficient matrices are a
worth pursuing.
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Localization-Induced Band and
Cohesive Model1
A localization-induced cohesive model has been proposed for shear band evolution,
growth, and fracture. Strain gradient theory has been applied to establish the criterio
the onset of localization and the governing equation in the post-bifurcation stage.
lytical solutions in one-dimensional case are used to establish the ‘‘traction-separat
law, in which strain gradient and material intrinsic length scale present strong effect
addition, the solution predicts a finite width for the localization-induced band. It is
served that a larger length scale contributes to the growth of a larger width of local
tion region and separation for softening materials. The proposed model provides a
cedure to establish the fracture toughness analytically since the material length sc
taken into account. From the traction-separation analysis, it is found that damage
creases separation, whereas an increase in material length scale increases the op
displacement; however, the traction-normalized opening displacement curves (wit
spect to the material length scale) are identical. Based on the methodology of mu
scale analysis in meshfree method, a computational approach has been propos
enrich the one-dimensional traction-separation law to define fracture.
@S0021-8936~00!01104-1#
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1 Introduction
Fracture and localization are multiple scale physical proces

The onset and the subsequent development of strain localiza
during material de-cohesion process focuses energy into a
small region. This highlights the length scale and mic
mechanisms of the phenomena. In computational implementa
various constitutive laws or the relations derived based on c
tinuum mechanics have been applied for simulation. For insta
the cohesive model~@1,2#! has been widely used in many aspec
of fracture mechanics. In the localization analysis, numerous n
local constitutive models are proposed to achieve shear band
dependent of the computational grid size. Under dynamic load
with heat conduction, the adiabatic shear band has been inv
gated in Wright and Walter@3# and DiLellio and Olmstead@4#.

In this paper, localization analysis is conducted based on
strain gradient theory proposed by Fleck, Muller, Ashby, a
Hutchinson@5# and Gao, Huang, Nix, and Hutchinson@6#. The
corresponding ‘‘traction-separation’’ relation is derived. Usi
this relation we propose a localization-induced band and cohe
model. The effect of the material intrinsic length scale is includ
in this model. A multiple scale numerical procedure based
reproducing kernel particle method~RKPM! is implemented in
the solution. Several interesting results are reported. It is c
cluded that material intrinsic length scale has a significant ef
on the localization analysis. The proposed multiple scale mo
which is based on the mechanism-based strain gradient the
resolves the intrinsic length scale regardless of the discretiza
Finally, the authors also wish to point out that the proposed m
tiple scale approach can be applied to any strain gradient mo
although an additional mountain of work is needed.

The paper is organized as follows: A brief review of the mod

1This is an extended version of the paper presented at the Multi-scale Ana
symposium of the ASME Mechanics and Materials Conference, June 27–30, 1
Blacksburg, VA.

2To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, March 7, 2000. Associate Technical Editor: B. M. Moran. Discussion
the paper should be addressed to the Technical Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houst
TX 77204-4792, and will be accepted until four months after final publication
the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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and the establishment of the governing equation are presente
Sections 2 and 3, respectively. Section 4 and 5 give the detail
the localization analysis. The cohesive model based on strain
dient plasticity is established in Section 6. After the demonstrat
of the proposed multiple scale numerical approach in Section
conclusions are made in Section 8.

2 Review of Strain Gradient Plasticity

2.1 Classical Deformation Plasticity. The classical plastic-
ity model states that the plastic strain rate,«̇ p, is proportional to
the gradient of the plastic potential,F, with respect to the stres
tensors:

«̇ p5l̇
]F

]s
(2.1)

where l̇ is the flow factor; «̇ is the strain rate tensor and it
components are related to the velocity fieldv by

«̇5
1

2
@v¹1¹v# or «̇ i j 5

1

2
~v i , j1v j ,i !. (2.2)

The superposed dot represents the time derivative and the
perscript ‘‘p’’ denotes the plastic part of a quantity. The normali
rule applies,F5F(s̄), and the flow stresss̄ is defined by

s̄5sYf ~ «̄ !; «̄5F2

3
« i j « i j G1/2

(2.3)

wheresY is the yield stress;«̄ is the equivalent strain;f ( «̄) is
calibrated from the uniaxial stress-strain relation, i.e.,s̄/sY versus
«̄/«Y ; «Y is the yield strain; ands can be expressed as the sum
the deviatoric stress tensors d and the mean stresspI , that is

s5s d1pI ; p5
s i i

3
. (2.4)

I is the identity tensor; repeated indices imply summation.
Assuming small strain, the elastic portion of strain rate,«̇ e, is

given by

«̇ e5
11n

E
ṡ d1

122n

E
ṗI or «̇ e5Le :ṡ (2.5)
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Le is the elastic compliance tensor;n andE are the Poisson’s ratio
and Young’s modulus, respectively.

Combining Eq.~2.1! and Eq.~2.5!, the constitutive law can be
written as

ṡ5C:«̇; «̇5«̇ e1«̇ p; C5Le
212

S Le
21:

]F

]sD S ]F

]s
:Le

21D
f 8~ «̄ !1

]F

]s
:Le

21:
]F

]s

.

(2.6)

2.2 Rate Form of Strain Gradient Plasticity. The rate
form of a strain gradient tensor is defined by

ḣ5¹¹v or ḣ i jk5vk,i j 5
]2vk

]xi]xj
. (2.7)

The strain gradient theory employed in this paper has the
lowing properties:

• A material intrinsic length scalel, which relates to the density
of the geometrically necessary dislocation for a single-s
system of a single crystal, is defined as~@7#!

l53Fam

sY
G2b (2.8)

whereb is Burger’s vector,m denotes the shear modulus, an
a is a constant.

• At a microscale level, the flow stress is governed by the d
location motion~@6#!

s̄5sYAf 2~ «̄ !1 l h̄ and h̄5A1

4
h i jkh i jk . (2.9)

Equation~2.9! is referred to as the Taylor’s hardening rel
tion.

• In our study, we discovered that the effect from the cou
stress introduced by Gao et al. is relatively small. Hence,
effect from the couple stress is ignored in this paper.

• Incompressibility and small strain theory are assumed.

With the above assumptions, the rate form of the strain grad
plasticity can be obtained by the time differentiation of the def
mation plasticity relation,

s d5
2

3

«

«̄
s̄ (2.10)

with the flow stress given by Eq.~2.9!:

ṡ d5C̄s«:«̇1Csh
]ḣ. (2.11)

The components ofCs« andCsh are

C̄i jkl
s« 5

2s̄

3«̄ Fd ikd j l 1
2

3

f ~ «̄ ! f 8~ «̄ !« i j «kl

«̄~ f 2~ «̄ !1 l h̄ !
2

2« i j «kl

3«̄2 G (2.12)

and

Ci jklm
sh 5

hklm

4h̄

2s̄

3«̄

« i j l

2~ f 2~ «̄ !1 l h̄ !
. (2.13)

The traction rate along a natural boundary is given as

ṫ5n•~ṡ d1 p̄I !. (2.14)

2.3 Damage. To incorporate damage, we employ a simp
damage law such that the yield stress in Eq.~2.9! is replaced by

sY5sY0~12D ! (2.15)

wheresY0 is the yield strength without damage. The linear da
age evolution law by Tvergaard@8# is applied:
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Ḋ5k«G p (2.16)

wherek is a material constant,«G p is the rate of nonlinear strain
invariant, which is defined by«̄p5 «̄2 «̄Y . With the inclusion of
the above damage, the deformation plasticity is still governed
Eq. ~2.10!, and the rate form of strain gradient plasticity wit
damage becomes

ṡ d5C̄s«:«̇1Csh
]ḣ1C̄s«p

:«̇p (2.17a)

or

ṡ d5Cs«:«̇1Csh
]ḣ. (2.17b)

In Eq. ~2.17a! the components of the additional coefficient te

sor C̄s«p
are given by

C̄i jkl
s«p

52
4s̄

9«̄2

sY0

sY
k« i j «kl

p . (2.18)

Comparing Eq.~2.17a! with Eq. ~2.11!, it is found that the first
two terms are identical to while the third term is a result of t
damage law.

3 Localization for Strain Gradient Plasticity

3.1 Preliminaries and Assumptions. Consider the bound-
ary value problem for a homogeneous bodyL as shown in Fig.
1~a!; it is assumed that a strain localization widthw takes place
alongG with normal vectorn and tangent unit vectorm defined

Fig. 1 Kinematic representation of a localization zone
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with respect to the centerline ofG. As shown in Fig. 1~b!, j1 and
j2 are the coordinates inm and n directions, respectively. The
following assumptions are made in the analysis:

1 For the localization zone shown in Fig. 1, it is assumed t
the velocity field can be separated into two parts~@9#!

v5vhom1vloc (3.1)

where the superscript ‘‘hom’’ refers to the homogeneou
deformed solid outside the localization zone. Supersc
‘‘loc’’ refers to the additional deformation due to the loca
ization.

2 The localized velocityvloc is assumed to be independent
j1 , i.e., ]vloc/]j150 ~@9#!.

3 The gradient of the width of the localization zonew respects
to the local coordinatej1 is assumed to be small, i.e
]w/]j1!1.

4 The gradient of the shear stress rate alongj1 is also small, in
other words,]sab /]j1!1 whenaÞb.

5 The gradient of the pressure rate is small alongj2 , i.e.,
] ṗ/]j2!1.

6 Inertial effect is only considered at the onset of localizatio
It is ignored in the post-bifurcation analysis.

From the postulations introduced above, the strain and st
gradient tensors can be expressed as

«̇5«̇hom1«̇loc ḣ5ḣhom1ḣloc. (3.2)

The corresponding components can be shown as

«̇loc5
1

2
~gn1ng! or «̇ i j

loc5
1

2 S ]v i
loc

]j2

]j2

]xj
1

]v j
loc

]j2

]j2

]xi
D

(3.3)

ḣloc5qnn1ḡmm or ḣ i jk
loc5

]2vk
loc

]j2
2

]j2

]xi

]j2

]xj
1q

]vk
loc

]j2

]j1

]xi

]j1

]xj

(3.4)

where

g5
]vloc

]j2
; q5

]2vloc

]j2
2 ; ḡ5qg;

q5F S ]2x1

]j1
2 D 2

1S ]2x2

]j1
2 D 2G21/2

. (3.5)

3.2 Governing Equations. With reference to the free-bod
diagram shown in Fig. 1~b!, the equilibrium equation can be ob
tained by applying conservation of linear momentum along
normal direction. In order to determine the relationship betwe
the time scale and the material length scale, the inertia effe
included in the onset of localization analysis to give

ṫn
L1 ṫn

G5E
G
r v̈dj1 . (3.6)

From the eigenanalysis given in Section 4, it can be dedu
that the solution is proportional toeA(ln /r)sYt. Thenth eigenvalue
ln is to be defined in Eq.~4.9a!. It has the following properties:

ln}S w

l 3D . (3.7)

Sincew usually has the same order of magnitude asl, therefore

ln}S 1

l 2D . (3.8)

From Eq. ~3.8!, one can estimate thatln is in the order of
1012/m2 consideringl to be around 1mm. According to this esti-
mate, letsY5100 MPa andr58000 kg/m3, it can be further con-
cluded that the decaying ratio of the responseA(ln /r)sY is ap-
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proximately in the order of 108/sec. This indicates that the
acceleration cannot be ignored. In the post-bifurcation stage,
consider only the static case and the acceleration term
neglected.

ṫn
L5 ṫn

G (3.9)

is the governing equation for post-bifurcation. However, for fa
transient problems such as high velocity impact and penetrat
the inertial effect should be included.

According to Eqs.~3.2!–~5!, the governing equation forvloc in
a localization zone can be obtained from the fact that strain
strain gradient are functions ofvloc. Using the traction rate~2.14!
and the rate form of gradient plasticity, we derive the govern
equations for the following two cases:

3.2.1 Onset of Localization.The equilibrium equation Eq.
~3.6! becomes

~n•Cs«uG•n!•g1n•CshuG]~ ḡmm!1n•CshuG]~qnn!

1n•~Cs«uG2Cs«uL!:«̇hom1n•~CshuG2CshuL!]ḣhom

5E
G
r v̈dj1 . (3.10)

The equilibrium equation~Eq. ~3.10!! can be rewritten in terms
of vloc by expressingg and q in terms of the first and secon
derivatives ofvloc. The governing equation of localization, whic
is a second-order partial differential equation, can be shown to

F Ā11 Ā12

Ā21 Ā22
G 5

]2v1
loc

]j2
2

]2v2
loc

]j2
2
6 1F B̄11 B̄12

B̄21 B̄22
G 5

]v1
loc

]j2

]v2
loc

]j2

6
5 HC11

C22
J 1 HD11

D22
J . (3.11)

The Āi j andB̄i j coefficients are functions of the components
Cs« and Csh. C11 and C22 represent the inertia effect.D11 and
D22 are constants.

Remark: ~1! If the couple stress is kept in the formulation, th
governing equations for onset of localization and post-bifurcat
can also be obtained following the usual conservation of lin
and angular momentum.~2! For hyperelasticity in which the ma
terial length scalel is set to be zero, the above equation reduces
the governing equation obtained by Hill@10#. If the effects of
strain gradient and inertia are ignored andCs«uG5Cs«uL in the
close neighborhood of the localization zone, Eq.~3.11! degener-
ates toQ•g50 whereQ5n•Cs«

•n is theacoustictensor defined
in Rice @9# and Rudnicki and Rice@11#.

3.2.2 Post-bifurcation of Localization.Because of the strain
gradient effect, theCs« andCsh matrices in the localization zone
are different from the ones in the homogeneous region. Hence
conservation of linear momentum requires

bn•~Cs«uG2Cs«uL!•nc•g1n•CshuG]~ ḡmm!1n•CshuG]~qnn!

1n•~Cs«uG2Cs«uL!:«̇hom1n•~CshuG2CshuL!]ḣhom50.

(3.12)

Equation ~3.12! governs the subsequent deformation at po
bifurcation stage. They are used as the governing equations in
proposed localization-induced cohesive model. Similarly, E
~3.12! can be written as a second-order partial differential eq
tion as
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F Ā11 Ā12

Ā21 Ā22
G 5

]2v1
loc

]j2
2

]2v2
loc

]j2
2
6 1F B̄11 B̄12

B̄21 B̄22
G 5

]v1
loc

]j2

]v2
loc

]j2

6 5 HC11

C22
J .

(3.13)

In the post-bifurcation stage,C11 andC22 components are also
functions of material response matrix coefficients.

4 One-Dimensional Case

4.1 Boundary Conditions. For the one-dimensional rod
shown in Fig. 1~c!, the only nonzero velocity component isv(j2).
In the subsequent analysis, we letj25x1 because of the one
dimensional simplification. The localization analysis is studied
applying a velocityv̄ at both ends of the bar in the opposi
direction so that

vS 1
L

2D5 v̄ (4.1a)

and

vS 2
L

2D52 v̄ (4.1b)

whereL is the length of the rod.
As shown in Fig. 1~c!, the nonzero of strain rate component

the right boundary of the localization zone~i.e., x15w/2! is

dv
dx1

U
x151w/2

5
dvhom

dx1
. (4.2)

From symmetry, we only consider half of the model. Due to
fact that the symmetric structure is under antisymmetric load
v loc should also be antisymmetric. Therefore

v locux15050. (4.3)

4.2 Onset of Localization Solution. Right before onset of
localization, a uniformly distributed strain«̄0

hom exists over a one-
dimensional bar with a corresponding equivalent stresss̄5sY .
At or after the onset of localization, each material point underg
either localized deformation or elastic unloading. Thef ( «̄) in Eq.
~2.9! can be given as a piecewise linear function:

f ~ «̄ !5H E

sY
F «̄2S «̄0

hom2
sY

E D G «̄0
hom2

sY

E
, «̄, «̄0

hom

11
Et

sY
~ «̄2 «̄0

hom! «̄>«̄0
hom

(4.4a)

and

f 8~ «̄ !55
E

sY
«̄0

hom2
sY

E
, «̄, «̄0

hom Et.0 hardening;

Et50 perfect plasticity;

Et

sY
«̄>«̄0

hom Et,0 softening;

(4.4b)

where Et is the tangent modulus of strain softening/harden
without localization.

Before softening starts,f ( «̄)5 f ( «̄hom), the first equation of Eq.
~3.13! becomes

A11

d2v loc

dx1
2 1B11

dv loc

dx1
5C111D11. (4.5)
806 Õ Vol. 67, DECEMBER 2000
by
e

at

he
ng,

es

ng

According to the constitutive law given by Eq.~2.10!, A11 is
found to be the material length;B11 is a linear function of the
hardening-softening constitutive law,C11 represents the inertia
effect andD11 is a constant given below, i.e.,

A115 l ; (4.6a)

B1152& f ~ «̄ ! f 8~ «̄ !; (4.6b)

C115
3&

sY
E

2w/2

w/2

r v̈dj1 ; (4.6c)

D1152& f ~ «̄ !~E2Et!«̇
hom. (4.6d)

By taking the partial derivative with respect tox1 , Eq. ~4.5!
becomes

l
]3v loc

]x1
3 12&Et

]2v loc

]x1
2 5 r̄

]2v loc

]t2 with r̄5
3&

sY
r. (4.7)

Introducing the symmetric Eq.~4.1! and antisymmetric Eq.
~4.3! boundary conditions, the solution to Eq.~4.7! can be put in
the following form:

v loc~x1!5(
n51

1`

An~ t !ewnux1u sin~)cnx1! for 2
w

2
<x<

w

2
.

(4.8)

Assuming a form ofAn(t) in terms of the eigenvalueln as

An~ t !5~bn1e2 iAln / r̄t1bn2eiAln / r̄t!, (4.9a)

then one can write

wn52
1

2
~z1n1z2n!1z3n , (4.9b)

cn5
1

2
~z1n2z2n!. (4.9c)

The coefficients in Eqs.~4.9a!–~4.9c! are

z1n5@h1n1Ah1n
2 2h2n

2 #1/3, (4.10a)

z2n5@h1n2Ah1n
2 2h2n

2 #1/3, (4.10b)

z3n52
2&

3l

Et

sY
, (4.10c)

h1n5
ln

2l
2h2n , (4.10d)

h2n5
16&Et

3

27sY
3 l 3 . (4.10e)

The nth eigenvaluecn can be determined from the remainin
boundary condition and the use of Eq.~4.2! leads to the following
equation:

tanS)cn

w

2 D1
dux1u
dx1

•

)cn

wn
50. (4.11)

In the above,cn andwn can be shown to be functions ofln .
Hence, Eq.~4.11! is an eigenvalue problem, which involves th
unknownln and the localization widthw. In order to solve this
eigenvalue problem, we propose a minimum second-order w
principle for the determination ofw. This is addressed in Sectio
4.2.1. With the assumption that the widthw is predetermined,ln
can be shown to be

ln5 l S vn
31

512Et
6

729sY
6 l 6cn

3D 1
32&Et

3

27sY
3 l 2 (4.12)

with
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Fig. 2 „a… Initial localization width as a function of material length; „b… initial
localization width as a function of damage „softening …; „c… initial localization
width as a function of damage „hardening …
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1
&Et

3lsY
1A4n2p2

3w2 1
4&npEt

3) lwsY

1
10Et

2

9l 2sY
2 D .

(4.13)

Combining Eqs.~4.12! with ~4.13!, one can conclude that time
scale

ln}S w

l 3D (4.14a)

or

ln}
1

l 2 . (4.14b)

4.2.1 Minimum Principle for the Determination of Localiza
tion Width. The localization widthw is determined by minimiz-
ing the following second-order work term:

U̇5E
2w/2

w/2 S ṡd«̇ loc2
1

2
r v̇ loc

• v̇ locDdx1 . (4.15)

In Eq. ~4.15!, ṡd is computed from Eq.~2.17!; «̇ loc can be
obtained by taking the derivative with respect tox1 on Eq.~4.8!;
andv̇ loc is constructed by taking the derivative with respect tot on
Eq. ~4.8!.

Since w is the only undetermined variable in the kinemat
admissable velocity field defined in Eq.~4.15!, the variation ofU̇
becomes
anics
c

dU̇5
]U̇

]v loc

]v loc

]w
dw (4.16a)

or

]U̇

]v loc

]v loc

]w
50. (4.16b)

Equation~4.16b! gives one extra equation for solving the wid
w, which should be solved with then sets of equations from Eq
~4.11!.

Depicted in Figs. 2~a–c! are the initial localization width cal-
culated according to the energy minimum principle introduced
the previous section. The following observations can be dra
based on Figs. 2~a! to 2~c!:

• The initial localization width is inversely proportional to th
tangent modulus ratiouEtu/E for softening material.

• The initial localization width increases as the material leng
scale increases in the case of softening, while the opposite tre
observed in hardening. However, when the initial localizati
width is normalized with respect to the material length scale
decreases for softening and increases for hardening when the
terial length scale is increased.

• The initial localization width dies off quickly withuEtu/E for
the case of softening.
DECEMBER 2000, Vol. 67 Õ 807
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• For hardening, larger value ofuEtu/E gives larger initial
width when Et /(sYk)<1. WhenEt /(sYk).1, no localization
occurs.

• The initial localization width decreases rapidly when t
value of the damage parameterk is increased.

• For the case of perfect plasticity, the initial width obtained
infinite when damage is not considered. This validates the a
ment that damage must be included.

• When sufficient damage is included in the model, finite wid
of localization is obtained even for the case of perfect plastic

5 Post-bifurcation Solution Using Deformation Gradi-
ent Plasticity

Due to the presence of strain gradient, the homogeneous s
«hom is further separated into two parts, one is due to the grad
effect («g) and the other is a constant strain («h). That is

«5«h1«g1« loc (5.1a)

and

h5hh1hg1h loc (5.1b)

with

«h5
P11

E
(5.2)

whereP11 is the prescribed traction at both ends of the bar. A
other reason for this decomposition is because we need to d
«g such that atx156w/2

~« loc1«g!ux15w/250. (5.3)

This equation is compatible to the boundary condition~Eq.
~4.2!!:

US dvh

dx1
1

dvg

dx1
1

dv loc

dx1
D U

x15w/2

5Udvh

dx1
U

x15w/2

(5.4a)

or

US dvg

dx1
1

dv loc

dx1
D U

x15w/2

50. (5.4b)

To further simplify the solution procedure,«g is assumed to be
a constant with the value of«̄B

g within the localization band~i.e.,
2w/2,x1,w/2!. However, it is a function ofx1 for ux1u>w/2.

Since«h is given, by traction continuity and the strain decom
position~Eqs.~5.1a!, ~5.1b!!, the solution for« loc can be obtained
in two steps:
Step 1. General solution to« loc.

It is noted that the strain gradient effects vanish whenx1 is
sufficiently away from the localization region, i.e.,«g,hg⇒0
whenx1⇒` and« loc5h loc50 atx15L/2. Therefore, the traction
evaluated atx15L/2 is

utux15L/25sYf ~ «̄h1 «̄g!. (5.5)

We equate the traction inside the localization region, that is

utux1,w/2
5sYAf 2~ «̄ loc1 «̄B

g1 «̄h!1 l h̄ loc (5.6)

with the traction evaluated atx15L/2 to yield

sYf ~ «̄h!5sYAf 2~ «̄ loc1 «̄B
g1 «̄h!1 l h̄ loc (5.7)

Given that«̄5« in one dimension, Eq.~5.7! is further simpli-
fied by rearranging terms to give a nonlinear differential equat
and

d« loc

dx1
5&

f 2~«h1«B
g !2~ ā1b̄« loc!2~12k« loc!2

l ~12k« loc!2 (5.8)
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or

dx15
l ~12k« loc!2

&@ f 2~«h1«B
g !2~ ā1b̄« loc!2~12k« loc!2#

d« loc (5.9)

with

ā5~«h2«Y!
Et

sY
, (5.10a)

b̄5
Et

sY
, (5.10b)

The solution to Eq.~5.9! can be given asx1 versus« loc, i.e.,

x152
l

4&b2
lnF ~« loc1g32g2!~122b/g2!1g4

~« loc1g31g2!~122b/g2!2g4

•

~« loc1g32g1!~112b/g1!2g4

~« loc1g31g1!~112b/g1!1g4G1C0 (5.11)

with

g15AS 1

2k
1

ā

2b̄
D 2

1
f ~«h1«B

g !

b̄k
(5.12a)

g25AS 1

2k
1

ā

2b̄
D 2

2
f ~«h1«B

g !

b̄k
(5.12b)

g35
ā

2b̄
2

1

2k
(5.12c)

g45
4bb̄k

āk1b̄
(5.12d)

b5
b̄k

f ~«h1«B
g ! S 1

2k
1

ā

2b̄
D 2

. (5.12e)

Step 2. Solution to«g outside the localization region.
The traction evaluated right outside the localization zone, i

at ux1u.w/2 is

utu ux1u.w/25sYAf 2~ «̄g1 «̄h!1 l h̄g (5.13)

because«̄ loc5h̄ loc50 for L/2.ux1u.w/2.
By equating the traction given above with traction atx15L/2,

the following traction equilibrium equation is obtained:

sYAf 2~ «̄g1 «̄h!1 l h̄g5sYf ~ «̄h!. (5.14)

Following the same procedure as in Step 1,

d«g

dx1
5
&

l
@a22~a1b«g!2#

or

l

&@a22~a1b«g!2#
d«g5dx1 . (5.15)

with constants

a5 f ~«h!, (5.16a)

b52
E

sY
. (5.16b)

The solution for Eq.~5.15! is given as

«g52
a

b
1

a

b
tanhS b f ~«h!

x1

l
1C1D . (5.17)
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Fig. 3 „a… Evolution of localization width for different material length scale; „b…
evolution of localization width for different damage constants
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Equation~5.3! gives only one condition for the determination
the two constants~C0 andC1!. An additional condition, which is
based on the energy transferred from the outside to the loca
tion region, is needed. It is given by

E
2L/2

2w/2E
0

«g

sd«gdx15E
2w/2

0 E
0

« loc

sd« locdx1 . (5.18)

At the first step right after the onset of localization, the init
width solutionw0 can be used directly in Eq.~5.3! as the known
variables to determineC0 andC1 . For the remaining steps in th
post-bifurcation stage,w is solved based on Eq.~5.3! in which C0
andC1 have been solved from Step 1.

We have established the onset and post-bifurcation solut
based on a strong coupling between the strain gradient theory
has a length scale~l! and the continuum scale solution. In a sen
we have applied a multiple scale approach to the problem.
evolution of the localization width in post-bifurcation stage
plotted in Figs. 3~a! and 3~b!. From these figures one can draw th
following conclusions:

• For the same peak strain, i.e.,«(x150), a larger value of
material length results in a larger width of the localizati
zone.

• As the damage constantk becomes larger, the width of th
localization zone gets larger.

• The evolution of the width tends to converge to an alm
constant value after the peak strain value reached twice
yield strain.

The major features of the analysis can also be summarize
follows:

1 Material length scale is embedded within a multisc
framework.

2 In the proposed model, finite width of localization zone c
be predicted and we have established the relation with
material length scale.

6 Localization-Induced Cohesive Model
To consider the effect of stress triaxiality, we assume that in

radial direction, a uniformly distributed stress proportional to t
axial stress is applied on the rod; i.e.,

s225s335ktrs11 ktr,1 (6.1)

wherektr is an arbitrary constant representing the effect of str
triaxiality. From Eq.~6.1! it can be further given that

s112s225~12ktr !s115s11
d 2s22

d . (6.2)

The uniaxial stress can then be expressed as
hanics
f

iza-

al

ons
that
e,
he

is
e

n

st
the

as

le

n
the

the
he

ss

s115
1

12ktr
@s11

d 2s22
d #. (6.3)

In Eq. ~6.3! sd is computed by integrating the rate from of th
constitutive equation~Eq. ~2.17!!. Equation~6.3! represents the
relation between the axial stress and the transverse stress. B
on the solution tov loc, the tractionS over the localization~cohe-
sive! region can be calculated as follows:

S5As11 (6.4)

in which A is the cross-sectional area of the bar and chosen to
unity in the computation.

The localization-induced separationD is defined to be the sepa
ration between the two ends of the localization width:

D5ulocS w

2 D2ulocS 2
w

2 D (6.5)

with

uloc~x1!5E
2w/2

x1

« loc~y!dy (6.6a)

or

uloc~x1!52
l

4b̄2
H ~122b!ln~~« loc1g3!22g2

2!1~112b!

3F2~« loc1g3!1g1 ln
~« loc1g32g1!

~« loc1g31g1!
G

1g4Fg1 lnS « loc1g32g1

« loc1g31g1
D 2g2 lnS « loc1g32g2

« loc1g31g2
D G J .

(6.6b)

The computed traction-separation law are plotted in Figs. 4~a!
to 4~d! with varying material softening properties, material leng
scales, damage evolution parameter, and the level of hydros
stress. The following observations are emphasized:

• All these figures present an S-type traction-separation cu
• Stronger softening leads to smaller separations.
• Larger material intrinsic length scales result in larger sepa

tions, however, the traction-normalized opening displacem
curves~with respect to the material length scale! are identical.

• Larger damage constant produces less separation.
• For the same separation, higher traction is produced due

larger triaxiality ~hydrostatic pressure! constant.
DECEMBER 2000, Vol. 67 Õ 809
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Fig. 4 „a… Mode I traction-separation law with different damage constants; „b…
corresponding traction-separation law under varying hydrostatic pressure; „c…
mode I traction-separation law with different material length; „d… corresponding
traction-separation law under varying hydrostatic pressure
a
e
r

h
e
i
t

h
-

and
sive

need
ve-

s it

sed
tion
le-

-

n-
ec-
In fact, during the separation process of a material there are
opposite tendencies: strain softening accelerates the localiz
and decreases the stress; and the strain gradient which elevat
yielding strength and suppresses localization strain. In the te
nology of strain gradient theory, more geometrically necess
dislocation is required for yielding and it homogenizes the loc
ization strain. Apparently, the latter is significant right after t
onset of localization, and a slight drop of traction causes a r
tively large amount of separations at this stage. This also prov
an explanation for the rapid increasing of localization width at
beginning of the post-bifurcation, as shown in Figs. 4~a! and 4~c!.

It is noted that empirical formula based on curve fitting for t
relation between normalized tractionS/sY0 and normalized open
ing displacementd̄ ~with respect to material length scalel! can
be given for different cases. For instance, whenk50.6, Et /E
520.005, we have

S

sY0
5

~20.5398Y211.5867Y20.0466!

~12ktr !
(6.7)

with Y5exp@2~ d̄!2.23106# ktr,1. (6.8)

The major difference between the proposed multiscale cohe
model and the phenomenological cohesive model can be sum
rized as follows:

1 The traction-separation law is derived from a physica
based strain gradient theory while the classical approach
ploys a phenomenological traction-separation law.
MBER 2000
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2 Material length scale is embedded in the proposed model
has a significant effect at small scale. The classical cohe
model has no length scale in it.

3 Since the model is mechanism-based, fewer parameters
to be determined. While in the classical approach a cur
fitting procedure has to be taken.

4 The multiscale framework of the proposed model make
applicable for multiscale analysis.

7 Application to Multiscale Analysis
In this paper, the multiple scale enrichment procedure propo

in ~@12,13#! has been applied to embed the Traction-Separa
law, derived in the previous section, into meshfree or finite e
ment code. This method is briefly explained as follows:

In general, for an unknown field variable such as velocityv, a
computedv can be denoted asPv, the projection ofv obtained by
a projection operatorP, whereP represents a numerical proce
dure. Assume there is a two-scale decompositions ofv:

v5vhom1vloc. (7.1)

The multiple scale expansion ofv using the operatorP is

v5 v̄low1 v̄high1 v̄bridging (7.2)

where

v̄low5Pvlow , v̄high5 v̄high, v̄bridging52Pvhigh. (7.3)

A one-dimensional bar with length of 0.1 mm or 1 mm is i
vestigated. An imperfection area is prescribed in the middle s
Transactions of the ASME
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Fig. 5 A rod under tension
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tion with length of 0.003 mm. The material constants chosen
yield stresssy05100 MPa, Young’s modulusE523105 MPa,
softening modulusEt50.05E, and damage constantk50. An
imperfection of the yield stress (0.99sY) is employed in the ini-
tial localization region as shown in Fig. 5. Before«h reaches
0.98«y , the magnitude of velocityv is controlled as 1026t. After
that it is kept as a constant until localization occurs. Right at
onset of the localization, the magnitude of the velocity at
boundary is dropped to zero.

In the present work, the RKPM~reproduced kernel particle
method! ~@14–16#!, a recently developed meshfree method~@17#!,
has been employed. Four examples ranging from fine to co
distributions of particles have been computed and shown on
6. The particle numbers that are used in the above four case
given in Table 1. Two stress points are assigned in between
neighbor particles.

In the problem,uloc is taken from Eqs.~6.6! as the exact solu-
tion, the bridging term serves to couple the analytical solut
with the RKPM. It is expected that the bridging term vanish
when a coarse discretization is prescribed, while it dominates
solution in the case of fine discretization. This approach allo
hanics
re:

he
he

rse
ig.
are

two
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ws

one to use a numerical procedure with a very coarse mes
compute localization solution with considerable accuracy by e
bedding a localized exact solution.

In Fig. 6, the domain of interest is one length scale with 42
22, 10, 4 stress points for casesa, b, c, d, respectively. Hence, the
particle numbers in this region are correspondingly 211, 12, 6,
3 for the four cases. As can be seen, the simulated strain dist
tions from fine to coarse discretization are given from Fig. 6~a! to
~d!. In Fig. 6~a! the low-scale strain represents the localizati
phenomenon with sufficient accuracy. Since the high-scale s
tion becomes redundant, the bridging scale solution is signific
In this case the high-scale and bridging-scale strains will ess
tially cancel each other and the combination of the three sc
leads to the solution with higher accuracy. As can be seen in
transition case~Figs. 6~b! and 6~c!!, the effect of the bridging
scale solution decreases as more coarse discretization is
scribed. Figure 6~d! shows that both the low scale solution an
bridging scale solution can not catch the localization phenome
due to the coarse mesh. The phenomenon is captured by the
scale solution. These four examples have proven that the com
Fig. 6 Comparison of solutions among different discretizations
DECEMBER 2000, Vol. 67 Õ 811
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tation procedure can reproduce the localization-induced cohe
model by using a coarse distribution of particles.

8 Conclusion
A methodology is proposed to establish the boundary va

problem at the onset of localization and post-bifurcation for m
terials obeying strain gradient theory in conjunction with dama
To compare with conventional plasticity, significant differen
can be seen for both onset and post-bifurcation localization de
mation. Based on the analytical solutions obtained from o
dimensional tension, the ‘‘traction-separation law’’ for cohesi
model is derived. Some important observation is given as follo

• The evolution of the localized band width is a strong functi
of the material length scale. Larger material length scale c
tributes to larger localization zone and separation.

• Damage must be considered and faster damage evolution
produce a smaller localization band.

• Initial localization width is inversely proportional to the mag
nitude of softening modulus, while the trend is opposite
the hardening case.

The significance of the proposed methodology and results
be summarized as follows:

1 From the one-dimensional solution the localization zone s
shear band width has been obtained explicitly. It has the s
order as material intrinsic length scale and is dependent u
common mechanical properties.

2 The derived ‘‘traction-separation law’’ can be considered
a ‘‘cohesive law’’ since it determines the energy release rate
given material.

3 The corresponding numerical procedure is proposed base
multiple scale analysis. In conjunction with the ‘‘traction
separation law’’ and the solution of shear band width, the p
posed numerical procedure demonstrates the ability to captur
calized deformation with coarse discretization.

4 Potentially, the combination of proposed theoretical fram
work and numerical procedure provides a multiple scale meth
ology to determine the material fracture toughness from the c
stitutive law with multiphysics, or inversely, to calibrat
constitutive law based on experimental results.

Table 1 Discretization for different cases

Total
Number

of Particles

Number of
Particles in

One Length Scale
Length
Scale L Dx

Case a 4221 211 5mm 100mm 0.024mm
Case b 241 12 5mm 100mm 0.417mm
Case c 121 6 5mm 100mm 0.833mm
Case d 621 3 5mm 1000mm 1.612mm
812 Õ Vol. 67, DECEMBER 2000
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5 The shear band solution and cohesive model due to shea
similarly derived to yield the same expressions given in this
per, however, with a different set of constants.
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Bending and Extension of
Thin-Walled Composite Beams of
Open Cross-Sectional Geometry
A theoretical model for bending and extension of composite beams of open thin-w
geometry is devised. The model is based on a detailed description of the out-of-
warping and may handle generic open cross-sectional geometries and arbitrary l
configurations. In view of the potential of composite beams to produce useful struc
couplings, the analysis is focused on the ability to predict the coupling mechanisms
draw lines of similarities and differences between such beams and similar thin-w
beams of closed cross sections.@S0021-8936~00!01204-6#
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Introduction
The structural behavior of isotropic~and mostly metal! thin-

walled structures has attracted considerable attention during
last decades. Thin-walled structures play a major role in mod
engineering and in particular in aerospace engineering app
tions ~see, e.g.,@1,2#!. The analysis of thin-walled beams~that
originally emerged from analyses of long tubes! is an important
subset of the above huge range of thin-walled structures~see, e.g.,
@3,4#!, and beams of open cross-sectional geometry constitut
important ingredient of this subset.

In recent years, the increasing interest in composite be
seems to become a clear trend. Currently, composite beams a
special interest in many advanced engineering applicatio
among which aircraft wings and helicopter blades are typical
amples~see, e.g.,@5–10#!.

The primary attraction of thin-walled beams is due to the
trinsic high ‘‘strength-to-weight’’ ratio that such beams may offe
Similarly, the initial attraction of composite beams was origina
from the additional improvement of the above specific stren
and the improved fatigue characteristics that composites o
however, the potential of composite materials to supplystructural
(elastic) couplingwhich is a unique feature of directional com
posites is much more promising. Such couplings emerge from
stress/strain coupling characteristics at the material level, and
relatively simple to implement in composite beam structures
general, the structural couplings in beams may be classified
two categories: The extension/twist coupling and the bend
twist coupling. While in the former case one is interested in
coupling between the axial strain and the elastic twist, the la
coupling deals with the coupling between the lateral bending
the elastic twist. In general, extension/twist coupling is obtain
in beams with antisymmetric layup, while bending/twist coupli
is obtained in beams with symmetric layup configuration.
simple symmetric and antisymmetric layup for open thin-wal
cross section is presented in Fig. 1. Similar phenomena are
served in beams of solid cross section where a simple examp
a uniform beam made of two laminae. In this case, opposite la
angles create extension/twist coupling while identical lay
angles create bending/twist coupling. In many engineering ap
cations and mainly in aeronautical applications, the twist an
plays a major role~e.g., it directly influences the angle of attach

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
11, 1999; final revision, Jan. 14, 2000. Associate Technical Editor: M.-J. Pind
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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aircraft wings and helicopter blades!, and therefore, the abov
elastic couplings are of primary importance. If modeled and
lored properly, such couplings may significantly contribute to t
structural response of the beam and enable adequate tailorin
the beam structure to comply with specific requirements~see, e.g.,
@7,11#!.

The analysis of thin-walled composite beams is fundament
different from a similar analysis of isotropic structures. This
due to the fact that realistic composite thin-walled beams are t
cally produced in a way that results in material laminae which
parallel to the local wall direction~e.g., the ‘‘filament-winding’’
process!. Such a change in the material directions dramatica
influences the level of complexity of the required analysis, a
forces a development of different analytical methodologies.

Compared with closed thin-walled geometries, it is well know
that beams of open cross sections produce out-of-plane war
deformation which is very large and of different nature. Thu
since warping is known to play a major role in the determinat
of the coupling effects~see, e.g.,@9#!, it is expected that composite
beams of open cross section will provide substantially differ
coupling mechanisms and magnitudes compared with sim
beams of closed cross-section.

Due to the above described characteristics of thin-walled co
posite beams, the literature contains a vast theoretical and ex
mental research effort in this area most of which is focused
closed cross sections. It is beyond the scope of the present p
to present a thorough review of it. Yet, the reader is referred
~@12–17#!, while only few of the relevant models are discuss
here as representative analyses.

A Vlasov-type theory for fiber-reinforced beams with thin
walled open cross sections has been presented in~@12#!. The ki-
nematics is based on three spanwise functions~two transverse
displacements and a rotation angle of each cross section!, while
the out-of-plane warping is linearly proportional to the twist. T
model also includes a nonlinear set of equations which is used
bifurcation and stability analyses. References~@3,14#! focus on
composite beams of ‘‘I’’ cross sections with elastic couplings
The model consists of torsional-related out-of-plane warping
transverse shear. Warping distribution is based on a Vlasov-
warping function which is a function of the distribution of th
normal distance to the rotation center. The equations of equ
rium are derived by the principle of virtual work. A simplifie
theory for composite closed and open thin-walled beams is
sented in~@14#! where the out-of-plane warping is expressed us
a ~geometry-dependent! predetermined shape function, the magn
tude of which is the twist. The resulting model is subsequen
based on four equations for each cross section.

The analysis presented in this paper offers, in addition to
general formulation, some closed-form solutions for simple ca

v.
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essor
on,
li-
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that clarify the structural mechanisms in thin-walled open co
posite beams. The distinguishing feature of the present analys
the lack of preliminary assumptions regarding the shape of
out-of-plane warping distribution and its origin~i.e., torsional-
related or shear-related out-of-plane deformation!. Therefore, in
view of the important role of the out-of-plane warping in th
determination of the beam structural characteristics, the pre
theoretical model is capable of providing a proper insight into
structural elastic coupling effects and their influence on the ov
all structural response. It should be emphasized that the pre
model deals with the effect of extension and bending only. Hen
for a complete picture, a solution of the beam response to a
sional moment should be superimposed on the present resul

Kinematics
Figure 1~a! presents a uniform thin-walled beam the axis

which is straight and parallel~before deformation! to theX–Y–Z
system of coordinates, while the location of theY–Z system origin
over the cross section is arbitrary. The beam is defined in
domain between its ‘‘root’’ end area and its ‘‘tip’’ end area and
length is denotedL. The beam is acted upon a distribution
forces per unit lengthf x(X), f y(X), and f z(X), and a distribution
of moments per unit length,qx(X), qy(x), andqz(X). In addition,
concentrated forcesFx

i ( i 51,...,Nx
F), Fy

i ( i 51,...,Ny
F) and Fz

i ( i
51,...,Nz

F) are applied at the spanwise locationsXx
Fi ,Xy

Fi ,Xz
Fi ,

respectively. Similarly, concentrated momentsQx
i , (i 51,...,Nx

Q),
Qy

i ( i 51,...,Ny
Q) andQz

i ( i 51,...,Nz
Q) are applied at the spanwis

locationsXx
Qi ,Xy

Qi ,Xz
Qi , respectively. In the above definitions, th

subscripts ( )x , ( )y , and ( )z indicate quantities related to theX,
Y, andZ directions, respectively. Note that present modeling de
with slender beams, and therefore the exact distribution of
loads at each cross sections is immaterial as only their equiva
components along the beamX-axis ~i.e., theY–Z origin at each
cross section! are of interest. As already discussed, the aboveqx

Fig. 1 A scheme of a thin-walled composite beam of open
cross-sectional geometry. „a… The cross-sectional deformation
components „the out-of-plane warping, c„x ,h…, is not shown …;
„b… a generic open cross-sectional geometry; „c…, „d… symmetric
and antisymmetric layups „with respect to the X – Z plane ….
814 Õ Vol. 67, DECEMBER 2000
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i torsional moments are assumed to vanish throughout

present analysis as they should be taken into account with
separate analysis.

Figure 1~b! presents a scheme of an ‘‘open’’ thin-walled cro
section. The notion ‘‘open’’ stands for the case of athin-walled
simply connected domain~in thin-walled terminology it is a cross
sectional geometry where no ‘‘closed loops’’ exist!. Such a cross
section may include additional branches~e.g., ‘‘I’’ geometry!. As
shown, a local system of coordinatesj–h–z is located at each
point along the cross-sectional walls so thatj is parallel to the
X-axis, h coincides with the local tangent to the wall, andz is
perpendicular toj andh. The angle between theY and theh-axes
is denoteda. Thez–h origin is located at the wall middle plane
The normal~perpendicular! distance from theY–Z origin to the
tangent line at the point under discussion is denotedr and is given
by r 5Z cosa2Ysina.

The bending kinematics of the beam is based on the fact
the beam is a slender structure. The deformation is expresse
the cross-sectional displacementsu(X), v(X), andw(X) in theX,
Y, andZ directions, respectively, and a twist angle,f(X) about
the X-axis—see Fig. 1~a!. These components of the deformatio
are functions ofX only, and therefore, they represent ‘‘rigid’
deformation of each cross section that contains no warping. S
sequently, an additional out-of-plane warping function is super
posed~in the X direction! upon the above mentioned displac
ments. This warping function is denotedc, and is assumed to be
of zero average value over the cross-sectional area~i.e.,
**AcdA50). c is a function ofX, Y, andZ. The in-plane warp-
ing components~i.e., the distortion of the cross-sectional shap!
are neglected.

As shown in~@9#!, the above kinematics yields the followin
axial strain,«jj ~perpendicular to thez–h plane!, and shear strain
gjh ~in the j–h plane!:

«jj5u,x2Yv ,xx2Zw,xx1c ,x (1a)

gjh52rf ,x1c ,h (1b)

The role of the shear strain,gjz ~perpendicular to thej–h plane!
is limited and should be discussed separately in the context of
beam response to a torsional moment.

The cross section is assumed to be constructed out of ortho
pic laminae which are parallel to thej–h plane. In the genera
case, the principal axes of this laminae do not coincide with thj
~or X! direction and create an angleu with this direction—see
Figs. ~1a! and ~1b!. Hence, an ‘‘unbalanced’’ layup is obtained
and the corresponding constitutive relations may be put as

$s%5@C8#$«% (2)

where@C8# is a 636 stiffness matrix, the elastic moduli of whic
are functions of the material properties and the ply angle rela
to thej-axis, and$s% and$«% are the stress and strain vectors. A
indicated above, except for the out-of-plane warping, the cr
section is assumed to remain rigid in its own plane. However
discussed in~@9#!, more realistic results are obtained by assum
that the normal stressessyy ,szz and the shear stressthz are neg-
ligible. This assumption is sometime referred to as a first-or
approximation to the in-plane warping effects~see, e.g., discus
sion in @18#!. Thus, such a reduction of the constitutive relatio
of Eqs.~2! to the present case yields

H sjj

tjz

tjh

J 5FC11 0 C16

0 C55 0

C16 0 C66

G H «jj

gjz

gjh

J . (3)

The Governing Equations
For the sake of clarity and computational efficiency, the follo

ing discussion is broken down into sequential steps althoug
global ~‘‘one-step’’! presentation of the theory is also possible.
Transactions of the ASME
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First, the analysis will be derived for a general location of t
origin of the Y–Z system~see Fig. 1~b!!. In addition, the twist-
induced shear deformation is assumed to be embedded in a
porary warping functionc̃ which is defined asc̃ ,h5c ,h2rf ,x ,
and therefore,f50 is temporarily assumed~see Eq.~1b!!. Later
on, the evaluation off ,x for this case will be discussed.

To avoid dealing with the exact mode of application of t
distributed loads, the present analysis assumes that all distrib
loads are applied via a generic distribution of the body force co
ponents,Bj andBh in the X(5j) andh directions, respectively
Bj is used to introduce the componentsf x , qy , andqz , while Bh

is used to introduce the componentsf y and f z . Subsequently, the
following type of body force distribution in theX direction is
adopted:

Bj~X,Y,Z!5B0~X!1YBy~X!1ZBz~X! (4)

The aboveB0 , By , and Bz coefficients are obtained from the
integration over the beam’s cross section:

F A Ay Az

Ay I yy I yz

Az I yz I zz

G H B0

By

Bz

J 5H f x

2qz

qy

J (5)

while

@A,Ay ,Az ,I yy ,I yz ,I zz#5E E
A
@1,Y,Z,Y2,YZ,Z2#dA. (6)

As far as the transverse distributed loadsf y and f z are concerned,
the exact distribution of theBh component of the body force i
immaterial as long as**ABh cosadA5fy and**ABh sinadA5fz
since it will only influenceqx .

The present beam analysis is based on an integral form o
equilibrium equations in thej andh directions and on a differen
tial form of the equilibrium equation in thej direction. The above
equilibrium equations are

sjj,j1tjh,h1tjz,z1Bj50 (7a)

shh,h1tjh,j1thz,z1Bh50 (7b)

where according to the present assumptions, the underlined t
are ignored. Multiplying Eq.~7b! by cosa and sina, separately,
and integrating the resulting equations and Eq.~7a! once over the
cross-sectional area and then with respect toX, yields the follow-
ing three integral equations:

@Rx ,Ry ,Rz#5E E
A
@sjj ,tjh cosa,tjh sina#dA (8)

whereRx , Ry , andRz are the resultant force components that
at each cross section. These loads are determined by integr
the distributed forces (f x(X), f y(X), and f z(X)) and the concen-
trated force (Fx

i , Fy
i , andFz

i ! along the beam. For the case of
cantilever beam, these integrations may be written as

Ra~X!5E
X

L

f a~X8!dX81(
i 51

Na
F

Fa
i l i~X! (9)

wherea5x,y,z and

l i~X!5H 0 for Xa
Fi

<X

1 for Xa
Fi.X

. (10)

Other combinations of boundary conditions may be treated
similar way.

In addition to Eq.~8! that constitute three integral equations f
each cross section, and since the axial out-of-plane warping
local quantity~i.e., a function of bothj and h!, the local differ-
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ential equation in thej direction given by Eqs.~7a! should be
explicitly imposed as well, while the distribution of the body loa
Bj(X,Y,Z) is given by Eqs.~4!, ~5!.

The discussion of the boundary conditions for the above diff
ential equation will be focused on the most common case wh
the cross section consists of segments of constant elastic mo
and a segment is defined by any finite length over the cross
tional walls~see Fig. 1~b!!. Hence, at the cross-sectional free tip
the boundary condition requirestjh50. This condition implies
that

dc̃

dh
52

C16

C66
«jj , (11)

at these locations. Note that the above condition together with
tjz50 assumption yield a traction-free outer surface over the
tire beam since as previously mentioned, the exact applicatio
the distributed loads is not taken into account by the present b
analysis, and all distributed loads are assumed to be app
through the above-mentioned body force distributions. In ad
tion, between two segments~of different elastic moduli!, the shear
stress should remain continuous. Therefore, the shear strain (c̃ ,h)
exhibits a step change which is obtained from the followi
equation:

~C16«jj1C66c̃ ,h!uh
B
25~C16«jj1C66c̃ ,h!uh

B
1 (12)

whereh5hB represents the interface point between segments
hB

2 andhB
1 are two locations just below and above this locatio

respectively. A connection point of three or more segments yie
a similar condition.

It should also be emphasized that the coexistence of an inte
and a differential equations in theX direction~see Eqs.~7a!, ~8!!
does not create any redundancy. This is due to the fact that
unknown deformation componentu and c are also integral~i.e.,
constant over the cross section! and differential~i.e., of a local
nature over the cross section with zero average! components of
the deformation inX direction.

The above equations and boundary conditions may be pu
gether in a linear system of equations that should be solve
each cross section. For that purpose, the equations are firs
pressed in terms of displacements. Based on Eqs.~1a!, ~1b!, and
~3! one may write

sjj5C11~u,x2Yv ,xx2Zw,xx1c ,x!1C16~ c̃ ,h! (13a)

tjh5C16~u,x2Yv ,xx2Zw,xx1c ,x!1C66~ c̃ ,h!. (13b)

To simplify the following discussion, one should conceptua
consider a discrete model for the distribution of the warpingc̃
along the wall which may be denotedc̃~1!...c̃~N!. Subsequently,
the above system of equations may be put as

@S#5
u,x

v ,xxx

w,xxx

c̃~1!

]

c̃~N!

6 55
Rx2R̃x

Ry2R̃y

Rz2R̃z

B02ByY~1!2BzZ~1!2B̃~1!

]

B02ByY~N!2BzZ~N!2B̃~N!

6 (14)

whereR̃x , R̃y , and R̃z are functions ofv ,xx , w,xx , c ,x(h), and
B̃( i ) are functions ofu,xx , v ,xx , w,xx , f ,x , f ,xx , c ,xh( i ),
c ,xx( i ). Note that the boundary conditions of Eqs.~11!, ~12! are
embedded in the above system and so the condition of**AcdA
50. Initially, the termsR̃x ,R̃y , R̃z , andB̃( i ) are set to zero, and
are further updated during the iterative process that will be d
cussed later on.
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So far, the analysis assumed that the location of theY–Z system
at each cross section is arbitrary. However, to comply with
previously discussed assumptions of vanishing torsional mom
Eq. ~14! is reconstructed and solved for different locations of t
Y–Z system at each cross section, in order to find the location
will provide zero resultant moment at each cross section, nam

E E
A
tjhrdA50. (15)

In the isotropic case, the location which is obtained by fulfillin
Eq. ~15! is known as the ‘‘shear center.’’ In composite beams, t
location varies along the beam~in uniform beams as well! since
the r.h.s. of Eq.~14! is a function of the spanwise coordinate(X).

It is now possible to ‘‘perturb’’ the results obtained at the pr
vious stage by adding arbitrary modifications toY andZ that will
be denotedDY and DZ, respectively. These modifications a
required in order to locate the origin of all cross sections along
same line, namely, on a commonX-axis that may be arbitrary
selected as the ‘‘beam longitudinal axis.’’ A practical selection
the DY andDZ values that will restore the originalX–Y–Z sys-
tem as the global reference system. To cancel out the cha
which are induced by the aboveDY and DZ modifications, two
additional steps need to be carried out. First, the torsional mom
which is induced by the external loads at the modified sys
location should be determined and saved for further determina
of the beam behavior under torsion~it will be added to the tor-
sional momentsQx

i andqx!. In addition, in order not to induce an
changes in the axial or shear strains~see Eqs.~13a! and~13b!!, the
above modifications require the introduction of an additional ax
deformationDu,x which is given by

Du,x5DYv ,xx1DZw,xx . (16)

At this stage, one may introduce the twist angle,f ,x , into the
formulation. Again, this is thebending-induced twist anglewhile
the torsion-induced twist angleshould be determined separatel
The determination of this component of the twist angle is carr
out by the determination the warping function,c, using c ,h

5c̃ ,h1rf,x while the value off,x is selected as the one tha
minimizes the linear component of the warping distributio
namely

]

]f ,x
F E E

A
~cY!21E E

A
~cZ!2G50. (17)

The above criteria for selectingf ,x emerge from three-
dimensional or boundary conditions considerations at the b
root and/or tip ends. For example, for a complete warping restr
of a clamped beam, say at the root~wherev ,x50 andw,x50!, the
axial displacement given byū5u2Yv ,x2Zw,x1c ~see Eq.~1a!!
dictates the requirement for the warping to be orthogonal toY and
Z. Otherwise, nonvanishing value ofv ,x andw,x will be required
to minimize the axial displacement distribution at the root. No
that such a fulfillment of Eq.~17! does not provide a complet
axial displacement restraint that should include additional dis
bution of axial stresses as well. However, the above requirem
ensures that the additional axial stress distribution will produce
axial resultant and no transverse bending moments, and its i
ence will be of a local nature only.

To carry out the above minimization operation,c should be
first determined using

c5c̃1f ,xE r ~h!dh1const. (18)

where the constant term is selected so that**AcdA50.
To this end, the above-discussed steps yield the values ofu,x ,

v ,xxx , w,xxx , f ,x , andc(h) at each cross section. These valu
may be integrated and differentiated to give the distribution
u,xx(x), u(x), v ,xx(x), v ,x(x), v(x), w,xx(x), w,x(x), w(x),
c ,xx(x,h), c ,x(x,h), c(x,h), f ,xx(x), f ,x(x), and f(x). To
816 Õ Vol. 67, DECEMBER 2000
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carry out the above integrations, eight boundary conditions
u, v , xx , v , x , v, w,xx , w,x , w, and f are required. In the
present case of a cantilever beam, the values ofv ,xx and w,xx at
the tip end of the beam are obtained by equating the resu
moments there to the corresponding internal moments, name

@M y
t ,Mz

t #5E E
A
sjj@Z,2Y#dA. (19)

Similar relations are obtained between concentrated moments
point along the beam (Qy

i ,Qz
i ) and the corresponding change

~‘‘jumps’’ ! in thev ,xx andw,xx values at that point. The remainin
six geometrical boundary values are applied at the root:

u5v5v ,x5w5w,x5f50. (20)

The above values are used to update the r.h.s. of the syste
equations at each cross section~see Eq.~14!!. The solution is then
returned to a sequential cross-sectional analyses until converg
is achieved.

The Elastic Couplings
To analytically demonstrate the above theoretical model, a s

cial case of a composite beam of open circular cross section
dergoing bending moment and axial load is examined. Figure 2(a)
presents the general notation.

The Bending-Twist Coupling. A closed-form solution that
demonstrates the bending-twist coupling is presented in this
tion. As a simplified model, the ‘‘half-tube’’ cross section of Fig
2~b! is used. To create the desired bending-twist coupling, the
angle of the left-hand side of the cross section~i.e., the arc for
Y,0 and a.0!, is assumed to be of equal magnitude but
opposite sign to the ply angle of the right hand side of the cr
section~i.e., for Y.0 and a,0!. Similar to Fig. 1~c!, such an
arrangement creates a ‘‘symmetric’’ configurations where all e
tic moduli are constant along the circular wall except forC16

which takes the valueC165C̄16 for Y.0 and,C1652C̄16 for Y
,0. The above characteristics of the elastic moduli beco
clearer in light of the symmetric variation~with respect to the ply
angle! of C11,C66, andC55 and the antisymmetric variation of th
C16 ~see, e.g.,@19#!. Hence,C̄16 in this case is the absolute valu
of C16 obtained for the ply angle under consideration.

The beam is assumed to undergo a tip momentMz
t and there-

fore, a uniform resultant bending momentMz5Mz
t is induced at

each cross section. Subsequently, it is assumed thatu(x)5w(x)
50, and thatv ,xx is constant. To obtain the desired solution,c̃ ,h
is assumed to be equal to2āY and1āY over the left and right

Fig. 2 „a… A scheme of a circular thin-walled cross section; „b…
a ‘‘half-tube’’ cross section of nonuniform elastic moduli
„‘‘symmetric’’ layup …; „c… an open circular cross section of non-
uniform elastic moduli „‘‘symmetric layup …; „d… a ‘‘half-tube’’
cross section of uniform elastic moduli „‘‘antisymmetric’’
layup …
Transactions of the ASME
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sides of the cross section, respectively, whereā is a constant. All
of the above initial assumptions will be shown to be valid in wh
follows. Subsequently, Eq.~13b! shows that

tjh5H 2C̄16~2Yv,xx!2C66āY for Y,0

C̄16~2Yv ,xx!1C66āY for Y>0
. (21)

Hence, to assure thattjh will vanish along theentire cross sec-
tion, one should require

ā5
C̄16

C66
v ,xx . (22)

Which also satisfies Eqs.~8!, ~11!, ~12!, and ~15!. Subsequently,
from Eqs.~13a! and ~22! one may write

sjj52S C112
C16

2

C66
DYv ,xx (23)

which satisfies Eq.~8! and with the aid of Eq.~19! shows that
M y50 and

Mz5v ,xxS C112
C16

2

C66
D I yy (24)

whereI yy is defined by Eq.~6!. As shown,C112C16
2 /C66 becomes

the effective bending modulus, and Eq.~24! may be used for the
determination ofv ,xx per givenMz . The warping is determined
using Eq.~18! as

c ,h56āY1Rf ,xS 12
2

p
cosa D (25)

where the upper and lower signs represent theY>0 and Y,0
regions, respectively. By substitutingY52R sina, Eq. ~25! is
integrated and with the aid of the requirement**AcdA50, c
takes the form

c

R2v ,xx
5

C̄16

C66
F7cosa611b̄S 2

p
sina2a D G (26)

where b̄ is defined asf ,x /ā so that it reflects the geometrica
coupling factor that determines the amount of twist per unit be
ing curvature since according to the above definition:

f ,x

v ,xx
5b̄

C̄16

C66
. (27)

Application of Eq.~17! shows thatb̄ is given by

b̄5

EE
A
~7cosa61!YdA

EE
A
S a2

2

p
sina DYdA

(28)

where all integrals containingZ vanish and were therefore omi
ted. Carrying out the integrations for the present configurat
yields b̄521. Thus, a negative twist is induced by a lateral ben
ing curvature.

Figure 3 presents the above elastic coupling as a function o
layup angle for a typical graphite/epoxy orthotropic laminae~in
this case all laminae are identical and oriented at the same an!.
As shown in ~@19#!, the elastic properties may be express
in terms of engineering constants, which in the present c
are given by: E115130.3109N/m2, E225E33512.3109N/m2,
G125G1356.3109N/m2, G2354.3109N/m2, n125n1350.3,
n2350.5. The evaluations of theCi j8 elastic moduli as functions o
the above engineering constants may also be found in~@19#!.

Equation~26! shows that out-of-plane warping appears for no
zero ply angle and that the warping at the cross-sectional free
namely at thea5690 deg locations is equal in magnitude b
opposite in signs.
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It is interesting to compare the above coupling magnitude,
f ,x /v ,xx52C̄16/C66, with the magnitude obtained for a com
plete circular open cross section such as the one presented in
2~c!. For such an open cross section, theY–Z system is located a
the circle center, and Eqs.~21!–~28! are still valid, however, one
should user 5R and ignore the term 2/p cosa in Eq. ~25! and the
terms 2/p sina in Eqs. ~26!, ~28! ~and clearly integrate over the
entire circular cross section!. The above calculation shows tha
b̄522/p in this case. The same value is obtained for a clos
symmetric circular thin-walled cross section~see@10#!. Thus, it
may be concluded that a ‘‘half-tube’’ open cross section is p
ducing a bending-twist coupling magnitude which is 57 perc
larger than a symmetric~either open or closed! complete circular
cross section. As an additional reference, it should be mentio
that ~@9#! shows that the coupling magnitude in solid symmet
homogeneous cross sections may be expressed by Eq.~27! with
b̄521/2.

The Extension-Twist Coupling. To demonstrate the
extension-twist coupling the ‘‘half-tube’’ cross section shown
Fig. 2~d! is adopted. The elastic moduli are assumed to be c
stant~i.e., not functions ofh and/orz!, and therefore, this layup
configuration is generally referred to as ‘‘antisymmetric’’~see
e.g., Fig. 1~d!!, and is expected to produce an extension-tw
coupling. To demonstrate this coupling the following closed-fo
solution has been developed for a beam that undergoes a tip
load ~i.e., a uniform axial resultant load,Rx(X)5Fx).

By neglecting the warping derivatives in theX direction due to
the anticipated uniform longitudinal behavior and by assum
v(x)5w(x)50, u,xx50 andu,x5const.~as will be proved to be
valid later on!, Eq. ~11! shows that

dc̃

dh
52

C16

C66
u,x . (29)

Then, by substituting Eq.~29! in Eq. ~13a! and using Eq.~8!, the
axial strain becomes

u,x5
1

S C112
C16

2

C66
D

Fx

A
(30)

which shows that indeedu,xx50 and that similar to Eq.~24!,
C112C16

2 /C66 is the effective axial modulus in this case. Henc
the solution of Eq.~14! for each cross section is represented
Eqs. ~29!, ~30!. Note that Eq.~15! is satisfied regardless of th
values ofy0 andz0. However, the boundary conditions of Eq.~19!
shows that to ensurev ,xx50 and w

,xx
50 at the tip end of the

Fig. 3 The induced twist „f ,x… due to bending „v ,xx … and ex-
tension „u ,x… as functions of the layup angle for a typical
graphite Õepoxy orthotropic laminae
DECEMBER 2000, Vol. 67 Õ 817
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beam ~which is essential to support the abovev(x)5w(x)50
assumption!, one should selecty050 and z0522R/p. Such a
selection locates theY–Z origin at the cross-sectional area cen
~see Fig. 2~d!!. Otherwise, the above-obtained axial stress dis
bution ~which was found to be uniform over the cross sectio!
will produce nonvanishing transverse tip moments. For this cr
section,r 5R(122/p cosa), and subsequently, in order to dete
mine f ,x using Eq.~17!, c ,h takes the form

c ,h52
C16

C66
u,x1Rf ,xS 12

2

p
cosa D . (31)

Integrating the above distribution yields

c5
a

a ,h
S 2

C16

C66
u,x1Rf ,xD2

2R

pa ,h
f ,x sina1const. (32)

The requirement**AcdA50 shows that the above consta
vanishes, and Eq.~17! is satisfied provided that

Rf ,xS 12
2

p

EE
A
Y sinadA

EE
A
YadA D 5

C16

C66
u,x (33)

where the integrals containing theZ coordinate vanish due to sym
metry considerations. Carrying out the involved integratio
shows that

f ,x5
2

R

C16

C66
u,x (34)

As shown, the ratio ofC16/C66 is the parameter that derives th
variation with respect to the layup angle, similar to the bendi
twist case~see Fig. 3!. Substituting Eq.~34! in Eq. ~32! yields:

c

R
5

C16

C66
u,xS 4

p
sina2a D (35)

which shows that the warping magnitude is derived
C16/C66u,x . Similar to the pure isotropic case, the case of z
ply angle contains no warping. As the ply angle is increased
significant warping distribution which is of the order of the un
form axial extensionu,x appears. Note thatu,x itself is usually
growing with the layup angle since the axial stiffness is dram
cally softened due to the highE11/E22 ratio in this case.

Comparison of Eq. ~34! with the expression of f ,x
5(p/2A)(C16/C66)u,x obtained in the case of a single-cell clos
thin-walled cross section~whereAm is the area enclosed by th
median line andp is its circumference, see Ref.@9#, shows that
these two extension-twist coupling expressions are of the s
order.

Concluding Remarks
Theoretical model for the structural response of composite t

walled beams has been derived. The main feature of the pre
analysis is its capability to include a detailed out-of-plane warp
distribution regardless of its origin. The analysis presents a
neric treatment of the beam behavior under transverse ben
and axial loading, and the discussion includes comparisons
similar beams of closed cross sections. Closed-form solutions
simple cases are discussed and provide a clear insight into
the bending-twist and the extension-twist coupling mechanis
Some of the specific findings of the present analysis are
818 Õ Vol. 67, DECEMBER 2000
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~i! In the general case, all ‘‘beam’’ degrees-of-freedom~i.e., the
axial and two transverse displacements and the twist angle! are
fully coupled in composite thin-walled open beams.

~ii ! The elastic coupling characteristics are strongly depend
on the out-of-plane warping which plays a key role in their an
lytic prediction. Prescribed warping distribution may result
complete different coupling characteristics.

~iii ! In thin-walled open beams, the cross-sectional locat
where applied bending loads induce no moment~which is referred
to as ‘‘shear center’’ in isotropic beams! is a function of the load-
ing, spanwise location and boundary conditions.

~iv! Open cross sections provide larger bending-twist coupl
magnitudes than similar closed cross sections.

~v! The amount of twist per unit axial strain which is obtaine
due to axial load in open cross sections is of the same order a
similar closed cross sections.
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Use of Graded Finite Elements
to Model the Behavior of
Nonhomogeneous Materials
A finite element with a spatially varying material property field is formulated and c
pared to a conventional, homogeneous element for solving boundary value prob
involving continuously nonhomogeneous materials. The particular element studied
two-dimensional plane stress element with linear interpolation and an exponential m
rial property gradient. However, the main results are applicable to other types of
ments and property gradients. Exact solutions for a finite rectangular plate subjecte
either uniform displacement or traction either perpendicular or parallel to the prope
gradient are used as the basis for comparison. The results show that for identical m
with equal number of degrees-of-freedom, the graded elements give more accurate
stress values than conventional elements in some boundary value problems, while in
problems the reverse is true.@S0021-8936~00!01504-X#
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1 Introduction
In recent years, there has been growing interest in mate

with mechanical properties that are continuous functions of spa
variables. These nonhomogeneous materials arise naturally
manufacturing processes which produce thermal and chem
gradients and from biological synthesis processes. In addit
functionally graded materials~FGM’s! are materials engineered t
exhibit property gradients for the purpose of tailoring their perf
mance characteristics~@1#!.

A significant amount of research has been invested in be
understanding of the mechanics of these materials. Erdogan
his co-workers have analytically solved a number of fract
problems involving FGM’s~see, for example,@2–4#!. Gu and
Asaro @5,6# analytically studied the stress fields associated w
semi-infinite cracks and calculated the resulting initial crack
flection angle. Because these solutions are analytical they are
strained by certain simplifying assumptions. First, the geomet
are simple two-dimensional domains containing single, stra
cracks. In addition, the functional form of the nonhomogeneity
always an exponential, which can be written in the general fo

E~x,y!5E0 exp~bx1gy! (1)

whereE(x,y) is the elastic modulus at the coordinate~x,y! and
E0 , b and g are material constants~@3#!. In order to overcome
these limitations for the solution of more general boundary va
problems, a numerical solution method is needed.

Gu et al. @7# used finite elements to study the strain ener
release rate of fracture in an FGM. By constructing a highly
fined, focused mesh around the crack tip, they were able to
merically verify the relationship between the J-integral and
strain energy release rate for a static crack. In that study, Gu e
@7# mention that they achieve the material gradient by assign
corresponding material properties at the Gauss integration po
A similar technique for assigning material properties is employ

1Current address: Aeronautics and Astronautics Department, University of Illi
at Champaign-Urbana, 310 Talbot Lab, MC 236, 104 S. Wright Street, Urbana
61501.
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
1, 2000, 1999; final revision, May 5, 2000. Associate Technical Editor: M. Or
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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in this paper for the development of the graded elements. An
et al. @8# looked at the convergence of standard finite elem
solution techniques to evaluate stress intensity factors in FGM
They were able to show that a relatively coarse mesh and con
tional, homogeneous finite elements can be used in many s
tions. An important aspect of the work by Anlas et al.@8# is that
they used a uniform, rectangular mesh. This simple geom
lends itself to a straightforward discretization of a rectilinear m
terial property field. The element rows are aligned with the gra
ent direction and each row of homogeneous elements is assi
the material properties for the midline of the row. This produce
step-wise constant approximation to a continuous material p
erty field such as the one described in Eq.~1!. This same approxi-
mation was used in Li et al.@9# in solving for strain energy releas
rates in cracked FGM’s. Although the work of Anlas et al.@8#
shows that a piecewise constant approximation for the mate
property gradient can be used to provide fairly accurate glo
energy calculations, the local stresses and displacements w
each element are affected. In other applications, such as fa
analysis or crack growth predictions, these local values may b
critical importance.

A finite element that admits its own material property gradie
would provide a more accurate solution at the size scale of
elements themselves. The formulation of such an element is c
monly mentioned in references on the derivation of finite elem
stiffness matrices~see, for example, Bathe and Wilson@10#!. In
practice, however, this formulation is normally overlooked in f
vor of the much simpler methodology of increasing mesh refi
ment. In this paper we discuss the derivation and implementa
of a finite element with its own material property gradient for t
solution of simple boundary value problems in FGM’s. Althoug
the ultimate usefulness of such an element is linked to the c
plexity of the stress field, we will examine several simple tw
dimensional cases as a means of comparing among the altern
numerical modeling approaches and known exact analyt
solutions.

2 Element Formulation
In the standard derivation of the stiffness matrix for an isopa

metric finite element, one starts with an assumed set of interp
tion functions such that~see, for example, Bathe and Wilson@10#!

u~x!5(
I 51

n

Nl~x!UI . (2)
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, IL
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Here u(x) is a matrix of the displacement components~each a
function of position within the element!, NI(x) is the matrix of
interpolation or shape functions, andUI are the nodal displace
ment values for each of the ‘‘n’’ nodes of the element. To find the
infinitesimal strain components,«(x) one takes the derivatives o
the shape functions to get

«~x!5(
I 51

n

BI~x!UI (3)

where theBI(x) matrix is populated with the appropriate deriv
tives of theNI(x) functions.

Assuming linear elastic material behavior, the stress com
nents at a points(x) are calculated from the strain at that poi
through the material property matrixC(x) such that

s~x!5C~x!«~x!. (4)

Traditionally, the components of theC(x) matrix are a set of
constant material properties for each finite element. Howe
there is no fundamental reason that these elastic properties ca
be spatially variable functions within an element. In the case o
FGM, the components ofC(x) could be explicit functions de-
scribing the actual material property gradients. In any case,
define the element stiffness matrixKe as the linear function tha
maps the nodal displacementsUI to the nodal forcesf I for the
element

f I5KeUI . (5)

By the principle of virtual work, the work done by the nod
forces must be equal to the work of deformation within the e
ment. Setting these two quantities equal we can derive the foll
ing expression for the element stiffness matrix:

Ke5E
Ve

BT~x!C~x!B~x! dV (6)

where the integral is taken over the volume of the elementVe .
Up to this point, the only numerical approximation used in t

formulation was the imposition of the interpolation functions
Eq. ~2!. On the element level, the accuracy of this numerical
proximation is dependent on the compatibility of the assum
shape functionsNI(x) to the exact displacement field.~Exact here
refers to the analytical solution of the field equations under
assumptions of linear elastic response and infinitesimal strain! In
fact, if a set of shape functions is chosen which is perfectly co
patible with the exact displacement solution, the finite elem
results will capture this solution with any level of mesh refin
ment. For example, a bilinear displacement field will be ac
rately predicted by one or more elements employing bilinear
terpolation functions.

3 Material Property Gradients
The stiffness matrix for an element with graded material pr

erties can be calculated using Eq.~6!. The C(x) matrix in this
case will contain the material properties as explicit functions
the spatial variables. In general the material property fields ca
continuous or discontinuous, isotropic, or anisotropic, and can
written in closed form or as a numerical approximation. Any fun
tions which allow for the evaluation of the integral in Eq.~6! can
be used. Since in this paper we intend to compare numerica
sults to analytical solutions from Erdogan and Wu@4# we will
impose an isotropic property field with a constant Poisson’s r
and an exponential variation in elastic modulus as specified in
~1!. To further simplify the problem, we assume a rectilinear m
terial property field and align thex-axis in the direction of the
gradient by lettingg50. Under these assumptionsE0 is the elastic
modulus atx50 and 1/b is the length scale of the nonhomogen
ity. Although a single set of parameters will be used in ea
820 Õ Vol. 67, DECEMBER 2000
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boundary value problem, the stiffness matrix of an individual
ement will depend on its location in the property field sinceC(x)
in equation~6! is a function of position.

For comparison, we will also solve the finite element proble
using a step-wise constant material property field. This is
method used in Anlas et al.@8# as described in the Introduction. In
this case, theC(x) matrix for a specific element is assumed co
stant and assigned the property values at the centroid of the
ment. This approach allows the direct implementation of comm
cially available finite element packages, but imposes an additio
discretization error in the modeling of the material property fie

4 Results
Consider a finite uncracked plate (0<x<w,2h<y<h) made

of a continuously nonhomogeneous material with an expon
tially varying elastic modulus in thex-direction according to Eq.
~1! with g50 ~see Fig. 1!. The plate is subjected to a uniform
traction or displacement perpendicular~Fig. 1~a!! or parallel~Fig.
1~b!! to the direction of the property gradient. The solutions w
all be symmetric with respect to the midline, which in this case
the x-axis. Erdogan and Wu@4# analytically solved the problems
with loading in they-direction ~Fig. 1~a!! to be used as far-field
solutions for the edge-cracked plate problem. In the special c
where Poisson’s ratio is zero, the exact solutions to the proble
with loading in thex-direction ~Fig. 1~b!! are quite simple.

First, consider the constant displacement boundary condition
(y5h), as shown in Fig. 1~a! where the arrows represent a un
form displacement. The normal stress in they-directionsyy(x,y)
is quite easy to find and can be written

syy~x,y!5E~x!
u0

h
(7)

whereu0 is the imposed constant displacement andh is the half-
length of the plate in they-direction. All other stress component
are zero and this solution is exact everywhere in the plate.

For the case of uniform applied traction on (y5h), Fig. 1~a!
where the arrows represent a uniform traction, the exact solu
is not so simple. Under this loading, a constant stress field can
be sustained in a generally nonhomogeneous elastic material s
it would violate compatibility. However, it can be shown that
uniform applied traction in they-direction gives the following
exact solution along the line of symmetry~x-axis!

Fig. 1 Finite nonhomogeneous plate subjected to a uniform
displacement or traction; „a… perpendicular to the material gra-
dient direction, „b… parallel to the material gradient direction
Transactions of the ASME
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•

2bx1b2xw2ebx~2bx2b2xw141b2w2!141bw

ebwb2w22e2bw12ebw21

(8)

whereN is the total applied load. Along this line all other stre
components are zero. For the case of a very long strip, this s
tion can be considered an approximate solution far from
loaded edges.

For the cases where a uniform traction or displacement is
plied parallel to the gradient direction, shown in Fig. 1~b!, an
exact solution can be found easily if the Poisson’s ratio is se
zero. In this case, with either type of loading, the solution
essentially one-dimensional with

sxx~x,y!5s0 (9)

where s0 is the applied uniform traction~or in the case of a
uniform displacement, the traction resulting from the applied d
placement! and all other stress components are equal to zero.

In the following graphs we compare these analytical solutio
~exact at least along the liney50! to the finite element results
generated from a 100-node two-dimensional mesh~200 degrees-
of-freedom!. In both the exact solution and the finite element s
lutions the material modulus varies according to Eq.~1! with E0
51, g50 andbw5 ln 8 so thatE(x,y)u(x5w)58. In the solutions
for loading in they-direction, the Poisson’s ratio is constant at 0

Fig. 2 Normalized stress component versus position in non-
homogeneous plate subjected to uniform displacement in the
y -direction

Fig. 3 Normalized stress component versus position in non-
homogeneous plate subjected to uniform traction in the
y -direction
Journal of Applied Mechanics
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and in thex-direction loadings, Poisson’s ratio is zero ever
where. In all the numerical solutions, four-node isoparame
plane-stress elements are used. The mesh is made up of 9
perfectly square uniform elements and represents the upper
(0<y<h) of the symmetric domain. For the cases with loading
the y-direction, the model is subjected to a uniform traction
displacement along the upper edge (y5h) and zero vertical dis-
placement along the lower edge (y50) to model symmetry. For
the cases with loading in thex-direction, the model is subjected t
uniform displacement or traction along the right edge (x5w) zero
horizontal displacement along the left edge (x50) and zero ver-
tical displacement along the bottom (y50). The results labeled
‘‘homogeneous’’ are generated using standard conventional fi
elements each with a constant material property matrix. The t
homogeneous refers to the properties within an element, th
still a model for a nonhomogeneous plate. Therefore, the prop
gradient is this case is a piecewise constant approximation to
~1!, discretized on the same size scale as the elements. The re
labeled ‘‘graded’’ are generated using elements with their o
material property fields. TheKe matrices for these elements a
calculated through Eq.~7! with variable elastic modulus as in Eq
~1!. In this case the property gradient is incorporated into
element stiffness matrix and is continuous between elements

Figure 2 shows the normalized stress componentsyyh/u0E0 as
a function ofx in a nonhomogeneous plate subjected to a unifo
displacement in they-direction. For this example, the stress
uniform in they-direction, so this graph applies for ally. Figure 3
shows the normalized stress componentsyyw/N in the same plate
subjected to a uniform traction in they-direction. Recall that the
exact solution is valid only along the line of symmetryy50.
Therefore, the finite element results are reported along this lin

Fig. 4 Normalized stress component versus position in non-
homogeneous plate subjected to uniform traction in the
x -direction

Fig. 5 Rescaling of the data from Fig. 4 for a single graded
element
DECEMBER 2000, Vol. 67 Õ 821
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well. Figure 4 shows the normalized stress componentsxx /s0 for
the uniform traction loading in thex-direction and is valid every-
where in the plate. A closeup of the same data for a single elem
is shown in Fig. 5. The results are nearly identical for the case
an applied uniform displacement and therefore these results
omitted. In all the finite element solutions, the stress at a spe
point is found by substituting the calculated nodal displacem
values back into Eqs.~3! and ~4!. For each element, the materi
property matrixC(x) is the same as the one used in the calcu
tion of the element stiffness matrix~Eq. ~7!!.

5 Discussion
Focusing first on Fig. 2, notice that the graded solution and

exact solution are identical. This should not be surprising si
the exact displacement field is linear and can therefore be capt
by the linear isoparametric elements. In fact a single graded
ment could be used to predict this simple solution exactly. T
homogeneous solution in this figure is piecewise constant. Th
expected since the elements in the conventional formulation e
have a single, homogeneous material property. These elem
have the same linear shape functions as the graded elements,
ever, they possess a piecewise-constant material property app
mation. Therefore, they predict the proper stress values onl
their centroids where their properties exactly match the mate
gradient function.

Figure 3 shows the normalized stress componentsyyw/N in the
same plate, this time subjected to a uniform vertical traction
y5h. Recall that the analytical solution given in Eq.~8! is exact
only along the line of symmetry (y5h) so we will compare only
the stresses calculated along that line. For this problem both fi
element solutions are piecewise continuous. This is because
linear interpolation functions used for both element types can
capture the actual displacement field~which in this case is expo
nential!. Clearly, however, the graded elements provide a be
approximation to the exact solution in every element. In
graded elements, the linear displacement results in an expone
stress field while in the homogeneous elements, the result
linear stress variation. In particular, notice the elements on the
side of the domain~i.e., smallx!. The homogeneous elements giv
syy as a decreasing function ofx in each individual element while
the exact solution shows an increasing trend. In the loading c
examined in Fig. 2 and 3, the stress componentssxx andsxy are
zero in the exact solution. Both finite element solutions give fa
good approximations to this~for exampleusxx /syyu,0.1 every-
where except the endpoints and is,0.05 in most elements!.

The differences shown in Fig. 3 are the result of the piecew
constant approximation to the actual material property grad
used in the conventional elements. The finite element solu
provides a numerical ‘‘best fit’’ to the exact solution within th
constraints of the formulation. In the exact solution, the norm
strain in they-direction is higher on the left side of the elemen
and both numerical formulations predict this. However, in t
case of the conventional homogeneous elements, this higher s
automatically translates into a higher stress due to the fact tha
material properties within the element are constant. The gra
elements, on the other hand, can better accommodate this s
difference because of their nonhomogeneous properties.

Figure 4 shows the normalized stress componentsxx /s0 for the
case where the loading is in thex-direction. Here we see that th
conventional elements capture the exact solution,sxx /s051,
while the graded elements give a piecewise continuous solu
This is the reverse of the effect seen in the previous load case
closer examination of the results as seen in Fig. 5 reveals
these are actually piecewise exponential functions. In this l
case, the stress in thex-direction is a constant throughout the bod
and therefore, according to Eq.~4! the strain must vary exponen
tially in this direction. In both formulations, the linear interpol
tion functions cannot capture this variation in strain within
822 Õ Vol. 67, DECEMBER 2000
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element, so they instead predict a constant normal strain in e
element. In the conventional homogeneous element, this resu
a constant stress, while in the graded element, this gives an e
nential variation in stress.

6 Conclusions
In this study graded finite elements were formulated using

ear interpolation functions and an exponential material prope
gradient and compared to conventional homogeneous elem
based on the same shape functions. This particular graded ele
is ideal for solving the uniform displacement-loading problem
Fig. 2, and therefore it is not surprising that it outperforms t
conventional element for this problem. In fact, this graded e
ment will capture this exact solution at any level of mesh refin
ment. In addition, this graded element also outperforms the c
ventional finite element when the load is an applied tract
perpendicular the gradient direction. In both cases, the los
accuracy for the conventional models is due to the material pr
erty discretization inherent in a homogeneous element. What
unexpected, however, is the fact that the same graded ele
gives a much poorer approximation to a uniform traction para
to the gradient direction.

We have shown here that by using graded elements with
increasing the degrees of freedom one can get more accurate
values for some stress components, but risks losing accurac
others. Of course, it is possible to formulate other graded elem
with higher order interpolation function and/or different mater
property gradients for specific applications. In each case, the
lyst must weigh the additional cost of formulation against CP
time. For example, in an earlier study, Anlas et al.,@8# showed
that in many cases conventional elements can be used to pro
reasonably accurate solutions for overall energy calculation
moderately low mesh densities. However, in some applicatio
such as failure analysis or crack path predictions, the local st
values may be of critical importance. The results of this stu
show that one must be cautious when using this type of gra
element in calculating local stress values within an element.
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Solution of the Moving Mass
Problem Using Complex
Eigenfunction Expansions
A new solution technique is developed for solving the moving mass problem for no
servative, linear, distributed parameter systems using complex eigenfunction expan
Traditional Galerkin analysis of this problem using complex eigenfunctions fails in
limit of large numbers of trial functions because complex eigenfunctions are not line
independent. This linear dependence problem is circumvented by applying a moda
straint on the velocity of the distributed parameter system (Renshaw, A. A., 1997, J.
Mech.,64, pp. 238–240). This constraint is valid for all complete sets of eigenfunctio
but must be applied with care for finite dimensional approximations of concentrated l
such as found in the moving mass problem. Numerical results indicate that the prop
method is competitive with Galerkin’s method with real trial functions in terms of ac
racy and rate of convergence.@S0021-8936~00!00604-8#
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1 Introduction
When analyzing the dynamics of a system that is related to

perturbation of a well-known linear distributed parameter syste
the most efficient trial functions to use for approximate solut
techniques are frequently the eigenfunctions of the underlying
tributed parameter system. For example, Wickert and Mote@1#
show that one-term Rayleigh quotient approximations of the n
ral frequencies of an axially translating cable are much more
curate when the complex eigenfunctions of the axially mov
string are used as trial functions rather than those of the statio
string. When the actual system under study is linear and t
invariant, eigenfunction expansions are particularly efficient si
the equations of motion decouple and exact closed-form solut
are obtained whenever the eigenfunctions are complete~@2–4#!.

For complex eigenfunctions of non-self-adjoint systems, eig
function expansion techniques can be problematic because
eigenfunctions are not linearly independent. When using Ga
kin’s method, this lack of linear independence renders the m
matrix singular as the number of terms used in the expan
increases, which eventually causes the method to fail. For s
adjoint systems, it is straightforward to extract a complete,
early independent set of eigenfunctions since complex conju
eigenvalues possess the same real eigenfunction. For com
eigenfunctions such an extraction could be performed us
Gram-Schmidt orthogonalization, but this would destroy the
sired eigenfunction properties.

In the present paper, we develop a general technique for u
complex eigenfunction expansions to approximate system dyn
ics and apply this method to the solution of the moving m
problem. In the moving mass problem, a concentrated m
moves across and is coupled to a linear distributed system su
a string or cable. The distributed system may be stationary
moving. This problem originally arose in the context of railro
bridge failures and has since been used to study cable tramw
ski lifts, and computer disk drives. A large number of techniqu
have been proposed for solving this problem including finite e
ment methods ~@5#!, integro-differential equation technique

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
15, 1999; final revision, Mar. 12, 2000. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
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~@1,6#!, and eigenfunction expansions~@7–11#!. When an eigen-
function expansion technique has been used, the eigenfunc
used were almost always real and self-adjoint. In Pesterev
Bergman@9#, a method was determined for the special case
non-self-adjoint systems with real eigenfunctions. When
eigenfunctions are complex, existing solution techniques can
be used. This occurs, for instance, when the distributed param
system either moves or possesses viscous damping.

In the present paper, we derive a method for using comp
eigenfunction expansions to solve the moving mass problem.
linear dependence problem for complex eigenfunctions is circu
vented by applying a modal constraint on the velocity of the d
tributed parameter system~@3#!. This constraint is valid for all
complete sets of eigenfunctions but must be applied with car
the case of finite dimensional approximations of concentra
loads such as found in the moving mass problem. Numerical
sults indicate that the proposed method is competitive with Ga
kin’s method using real trial functions in terms of accuracy a
rate of convergence.

2 Mathematical Preliminaries
Consider the nonconservative, linear, distributed parameter

tem whose equation of motion is

Mw,tt1Cw,t1Kw5 f (1)

where M, C, and K are linear, real, differential operators in
spatial domain,M.0, x is the spatial position,t is time,w(x,t) is
the system displacement, andf (x,t) are external forces. We as
sume the existence of a sufficiently differentiable Hilbert spa
with complex inner product̂,& on whichM, C, K, and their adjoint
operators,M* , C* , and K* , can be defined for appropriat
boundary conditions. In the special case of positive definite gy
scopic systems,M5M* , C52C* , K5K* andK.0. These are
not assumed in the following unless explicitly stated.

The eigenvalue problem associated with~1! is

ln
2Mun1lnCun1Kun50 (2)

and the eigensolutions$ln ,un(x)% are generally complex. Since
M, C, and K are real, if $ln ,un% is an eigensolution, so is its
complex conjugate, which we denote as$l2n ,u2n%5$l̄n ,ūn%
where the overbar denotes complex conjugation.~In the sequel,
when we say complex eigenfunctions, we mean eigenfuncti
that cannot be made entirely real.! The complete set of eigenso
lutions is ordered such thatn561,62,63 . . . . If $ln ,un% is an
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eigensolution of~2!, then$l̄n ,un* % is an eigensolution of the ad
joint eigenvalue problem. We assume that there are no vanis
eigenvalues and normalize the eigenfunctions such that

lnlm^Mun ,um* &2^Kun ,u,m* &5dnm (3)

wherednm is the Kronecker delta. The orthogonality

lnlm^Cun ,um* &1~ln1lm!^Kun ,u,m* &52lndnm (4)

also holds. For positive definite gyroscopic systems, the eigen
ues are imaginary and the eigenfunctions and adjoint eigenf
tions are the same up to a multiplicative constant. We norma
the eigenfunctions such thatun52un* .

We assume that the eigenfunctions are complete in the s
that an eigenfunction expansion can simultaneously represen
arbitrary displacement and velocity at any instant of time. This
true for most problems of practical interest~@2#!. For complete
eigenfunctions, the general solution of~1! can be expressed as a
eigenfunction expansion

w5 (
n561,62, . . .

6`

dn~ t !un~x!. (5)

Since the eigenfunctions are not linearly independent~in the finite
dimensional case, for instance, there are twice as many eigen
tions as spatial dimensions!, Eqs. ~1! and ~5! do not uniquely
determinedn(t). We therefore constrain thedn(t) such that

w,t5 (
n561

6`

dn ,tun5 (
n561

6`

lndnun (6)

holds. Upon substituting~5! into ~1!, taking the inner product with
l̄nun* , differentiating~6! with respect to time and utilizing~3! and
~4!, the equation of motion decouples into the readily solv
equation

dn ,t2lndn5ln^ f ,un* & (7)

which uniquely determinesdn .
As a specific example of a system of form~1!, consider the

damped, axially moving string shown in Fig. 1 without the co
centrated mass. A string of unit tension moves axially betw
eyelets atx50 andx51 with uniform axial velocityv. The string
has viscous damping of magnitude 2pc. The transverse displace
ment of the string,w(x,t), is measured vertically upwards an
vanishes atx50 and x51. Gravity acts vertically downwards
For this system

M5I , C52pc12v
]

]x
, K5~v221!

]2

]x2 , f 52g,

(8)

whereI is the identity operator~@1#!. The system is positive defi
nite and gyroscopic whenc50 and v,1; the system is self-
adjoint whenc5v50.

The linear dependence of the eigensolutions can be dem
strated by calculating the determinant of the matrix

Fig. 1 Schematic of a damped, axially moving string subject
to a concentrated moving mass
824 Õ Vol. 67, DECEMBER 2000
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Mmn5^Mun ,um* & (9)

for n and m561, . . . ,6N using the eigenfunctions of un
damped, axially moving string,

ln5 inp~12v2!,

un52un* 5sin~npx!exp~ inpvx!/npA12v2. (10)

Figure 2 shows det(Mmn) as a function ofN for v50.25. AsN
increases, the determinant steadily becomes smaller and sm
due to the linear dependence of the eigenfunctions. At some fi
N, the matrix becomes numerically singular and noninvertible
the adjoint eigenfunctionum* in ~9! is replaced by eigenfunction
um , as is done in Galerkin’s method, the singularity problem
mains, and the resulting equation of motion derived by Galerki
method becomes numerically insoluble.

3 The Behavior of the Constraint
The crucial step in the eigenfunction analysis described in S

tion 2 that distinguishes it from self-adjoint analyses is the c
straint~6!. Since thedn(t) satisfy~7!, the constraint~6! is equiva-
lent to and can be evaluated directly by evaluating

(
n561

6`

~dn ,t2lndn!un5 (
n561

6`

ln^ f ,un* &un50 (11)

at any instant of time. From~11!, it can be seen that for self
adjoint systems with purely imaginary eigenvalues and real eig
functions, the terms in the finite summation

SN~x!5 (
n561

6N

~dn ,t2lndn!un5 (
n561

6N

ln^ f ,un* &un (12)

cancel out in complex conjugate pairs. For complex eigenval
and eigenfunctions,S`→0 in theL2 norm, but not in the point-
wise sense. This is important to the moving mass problem s
the solution of this problem depends crucially on the motion o
particular point in the span~e.g., the location of the concentrate
mass!.

Figure 3 showsSN for the uniform loadf 51 for variousN
while Fig. 4 showsSN for a concentrated loadf 5d(x20.3) for
variousN, using the undamped, axially moving string eigenso
tions ~10!. In both cases,SN→0 asN→`. However, while the
uniform load appears to converge uniformly, the concentra
load is distinguished by large rapid oscillations at the point
application of the concentrated load. Because of these oscillati
the spatial derivative,]SN /]x50, is expected to be poorly satis

Fig. 2 The determinant of MmnÄŠMu n ,u m* ‹ as a function of N,
the number of trial functions used
Transactions of the ASME
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fied for finiteN. This bears directly on the moving mass proble
since the constraint must be differentiated in order to reduce
order of the differential equation.

Despite these oscillations, the value ofSN at the point of appli-
cation of the concentrated load vanishes. This is always true
positive definite gyroscopic systems, since the terms ofSN cancel
out in pairs, and can be demonstrated for the damped ax
moving string~8! ~see the Appendix!. It remains an open questio
whether this is true for general non-self-adjoint systems.The fact
that SN vanishes at the point of application of a concentrated lo
for positive definite gyroscopic systems and for the damped,
ally moving string is essential to the following solution of t
moving mass problem.

4 The Moving Mass Problem
We now turn our attention to the moving mass problem sho

in Fig. 1 and governed by the dimensionless equation

w,tt12pcw,t12vw,tx1~v221!w,xx

5@2mg2m~w,tt12vw,tx1v2w,xx!ux5vt#d~x2vt !.

(13)

Equation~13! describes the coupled dynamics of a damped, a
ally moving string translating at speedv and a concentrated mas
of massm that translates with the string, entering the span at

Fig. 3 Plots of SN„x … for the uniform load fÄ1 for NÄ10, 20,
and 30 using the eigenfunctions of the undamped string

Fig. 4 Plots of SN„x … for the uniform load fÄd„xÀ0.3… for N
Ä10, 20, and 30 using the eigenfunctions of the undamped
string
Journal of Applied Mechanics
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50 and exiting the span att51/v. For convenience, the displace
ment of the string due to its own weight has been omitted, si
that solution can be found directly using the method given
Section 2 and superimposed on the moving mass solution.
consider two alternative solution methods.

Galerkin’s Method Using Real Trial Functions. In Galer-
kin’s method, a set of real, linearly independent, complete t
functions, pn(x), are selected and the response,w, is approxi-
mated by

w5(
n51

N

qn~ t !pn~x! (14)

for some finiteN. Expansion~14! is substituted into~13! and the
inner product with eachpm is taken. This produces to a set ofN
second order, ordinary differential equations in time of the for

Aq,tt1Bq,t1Dq5f (15)

where

q5@q1 q2 . . . qN#T (16)

Amn5^pn ,pm&1mpnopmo (17)

Bmn52cp^pn ,pm&12v^~pn ,x!,pm&12vmpno ,xpmo (18)

Dmn5~v221!^~pn ,xx!,pm&1v2mpno ,xxpmo (19)

fm52mgpmo . (20)

Subscripto to indicates evaluation atx5vt. Equation~15! is nu-
merically integrated in time to find the coefficientsqn(t). For
~13!, we choosepn5sin(npx), the eigenfunctions of the stationar
string.

If complex eigenfunctions are used as trial functions w
Galerkin’s method, the linear dependence of the eigenfuncti
renders this approach unusable forN greater than about 10 or so

Eigenfunction Expansion Method. In the eigenfunction ex-
pansion method developed here, the response is written as

w5 (
n561

6N

dn~ t !un~x!. (21)

Substitution of ~21! into ~13!, taking the inner product with
l̄mum* , differentiating the constraint~6! in time and applying it on
the left-hand side of~13!, gives the complex valued second-ord
ordinary differential equations

dm ,t2lmdm52mglmūmo* 2mlm (
n561

6N

$dn ,ttunoūmo*

12vdn ,tuno ,xūmo* 1v2dnuno ,xxūmo* %. (22)

In this form, these equations are not resolvable since the lea
order coefficient matrixmlmunoūmo* is singular for smallt. Since
the constraint~6! is valid for all x, including x5vt, one could
simply differentiate it in time, evaluate atx5vt and substitute
into ~22! to reduce the second-order ordinary differential equat
to first order. However, numerical experiments indicate that t
technique does not work because the derivative of~6! applied at
x5vt is not valid for finiteN.

Instead, we take advantage of the fact the constraint~6! holds
identically at the point of applicationof the concentrated load an
differentiate~6! along the trajectory of the concentration load, i.
DECEMBER 2000, Vol. 67 Õ 825
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~dn ,t2lndn!un

5 (
n561

6N

~dn ,ttun2lndn ,tun1vdn ,tun ,x2vlndnun ,x!50.

(23)

Since the constraint vanishes along this trajectory for finiteN, ~23!
holds identically atx5vt. Consequently, substitution of~23!
evaluated atx5vt into ~22! gives the 2N first order, complex
ordinary differential equations

dm ,t2lmdm52mglmūmo* 2mlm (
n561

6N

$~lndn ,tuno

2vdn ,tuno ,x1vlndnuno ,x12vdn ,tuno ,x

1v2dnuno ,xx!ūmo* %. (24)

Numerical integration of Eq.~24! gives the eigenfunction expan
sion solution considered here.

5 Convergence Results
Figures 5–8 compare the convergence results for Galerk

method with real trial functions and the complex eigenfunct
expansion method for a variety of cases. In each case, the
placement of the concentrated mass at the instance of time wh
is halfway across the span,t51/2v, is shown as a function ofN,
the number of terms taken.

Figures 5 and 6 show solutions for the undamped string. In
5, c50, v50.25, m5g50.375. In Fig. 6,c50, v50.5, m5g
50.125. Figures 7 and 8 show solutions for the damped string
Fig. 7, c50.3, v50.25,m5g50.375. In Fig. 8,c50.3, v50.5,
m5g50.125. Also shown in Figs. 5 and 6 and presented b
dash line is the solution calculated using the integro-differen
technique of Wickert and Mote@12#. This technique is only appli-
cable to the undamped string and cannot be used for Figs. 7 a
It does, however, give an alternative estimate of the accurac
the Galerkin and eigenfunction expansion results.

The results of each method appear to converge to the s
answer. The results also indicate that the proposed method is
petitive with Galerkin’s method with real trial functions in term
of speed of convergence and accuracy.

Fig. 5 The displacement of the concentrated mass at the mid-
point of the span as a function of N for Galerkin’s method using
real trial functions „plus … and the proposed eigenfunction ex-
pansion technique „circle …. The dashed line is the result ob-
tained using the method of Wickert and Mote †12‡. cÄ0, v
Ä0.25, tÄ2, and mÄgÄ0.375.
826 Õ Vol. 67, DECEMBER 2000
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Fig. 6 Same as Fig. 5 except tÄ1, vÄ0.5, mÄgÄ0.125. Galer-
kin’s method using real trial functions „plus … and the proposed
eigenfunction expansion technique „circle …. The dashed line is
the result obtained using the method of Wickert and Mote †12‡.

Fig. 7 The displacement of the concentrated mass at the mid-
point of the span as a function of N for Galerkin’s method using
real trial functions „plus … and the proposed eigenfunction ex-
pansion technique „circle …. cÄ0.3, vÄ0.25, and mÄgÄ0.375.

Fig. 8 Same as Fig. 7 except tÄ1, vÄ0.5, mÄgÄ0.125. Galer-
kin’s method using real trial functions „plus … and the proposed
eigenfunction expansion technique „circle ….
Transactions of the ASME
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6 Discussion
Unlike alternative solution techniques~e.g., @12#!, the eigen-

function solution method can be applied to any moving m
problem, including the cases when the moving mass is attache
the transporting medium by a spring and damper and when m
eling of the transporting medium includes bending stiffness. T
may be relevant to the analysis of disk drive designs since exis
results have only studied the interaction of stationary record
heads with the rotating memory disks or moving recording he
with stationary memory disks@10,13#. The method can also b
extending to arbitrary motion of the moving mass as long as
derivative of the trajectory of the mass is piecewise continuou
the x2t coordinate plane.

The unresolvable Eq.~22! can be derived in a number of wel
known methods. For instance, if one recasts the second o
equation of motion~1! into first order, state space form~@3,4#!,
Galerkin analysis will result in Eq.~22!. Pesterev and Bergma
@9# derive~22! using an integral equation technique. However,
constraint~6! is only implicitly assumed in both of these deriva
tions. As a result, previous researchers have not used~6! to reduce
the unresolvable second-order ordinary differential equation~22!
to the first-order~24!. This step, together with the insight to di
ferentiateSN along the trajectory of the concentrated mass in
x2t coordinate space, are the primary contributions of this pa

7 Conclusions
A new solution technique is developed for solving the movi

mass problem for nonconservative, linear, distributed param
systems using complex eigenfunction expansions. Traditio
Galerkin analysis of this problem using complex eigenfunctio
fails in the limit of large numbers of trial functions because co
plex eigenfunctions are not linearly independent. This linear
pendence problem is circumvented in the method proposed
by applying a modal constraint on the velocity of the distribut
parameter system@3#. This constraint is valid for all complete se
of eigenfunctions but must be applied with care for finite dime
sional approximations of concentrated loads such as found in
moving mass problem. Numerical results indicate that the p
posed method is competitive with Galerkin’s method using r
trial functions in terms of accuracy and rate of convergence.

Appendix
For the damped, axially moving string with a point force, it c

be shownSN50 exactly at the point force. The operators of t
system are given in~8! and the eigensolutions and the adjoi
eigensolutions are of the form

ln5a1 ibn

l̄n5a2 ibn (25)
un5Hn exp~vlnx/12v2!sinnpx

un* 5Hn* exp~2vl̄nx/12v2!sinnpx

wheren561,62 . . . , Hn andHn* are normalization constants t
be determined, and

a52~12v2!cp, bn5sgn~n!~12v2!pAn22c2. (26)

Substituting~25! into ~3! gives
Journal of Applied Mechanics
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HnH̄n* 5
2

D11 iD2
5

2~D12 iD2!

D1
21D2

2 for n.0, (27)

HnH̄n* 5
2

D12 iD2
5

2~D11 iD2!

D1
21D2

2 for n,0. (28)

where D15(a22bn
22(12v2)2n2p2)/(12v2) and D2

52abn /(12v2). Equations~25!, ~27!, and~28! give

lnun~x0!ūn* ~x0!5
2

D1
21D2

2 @~D1a1D2bn!

1 i ~2D2a1D1bn!#sin2 npx for n.0,

(29)

lnun~x0!ūn* ~x0!5
2

D1
21D2

2 @~D1a1D2bn!

1 i ~D2a2D1bn!#sin2 npx for n,0,

(30)

Therefore~12! becomes

SN~x0!5 (
n561

6N

ln^d~x2x0!,un* ~x!&un~x0!

5 (
n561

6N

lnūn* ~x0!un~x0!

5(
n51

N
4

D1
21D2

2 ~D1a1D2bn!sin2 npx50 (31)

since (D1a1D2bn)50 when expanded.
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On the Relation Between the
L-Integral and the Bueckner
Work-Conjugate Integral

J. P. Shi, X. H. Liu, and J. M. Li
Department of Engineering Mechanics, Xi’an University
of Technology, 710048 Xi’an, China

A simple but inherent relation between the L-integral and
Bueckner work conjugate integral is deduced for crack problem
isotropic, anisotropic, and dissimilar materials, respectively. It
proved the L-integral, from the mathematical point of view as w
as in principle, is arising from the Betti’s reciprocal theorem.
@S0021-8936~00!00103-3#

1 Introduction
Knowles and Sternberg@1# have shown that theL-integral is

given by

L5 R
G
e3i j ~Wxjni2Tiuj2Tkuk,ixj !ds (1)

whereG is a closed contour in thex15x, x25y plane surrounding
a whole crack;W is the strain energy density, andTi is the traction
acting on the outer side of theG. The characteristics of the
L-integral and theJk-integral are different. It can be proven th
the L-integral is a path-independent integral. We can also ve
that theL-integral is independent of the selection of the coordin
system.

The Bueckner work-conjugate integral~@2#! was derived from
the well-known Betti’s reciprocal theorem, which could be form
lated as follows:

I G5E
G
~ui

~ I !s i j
~ II !2ui

~ II !s i j
~ I !!njds ~ i , j 5x,y! (2)

where the superscripts~I! and ~II ! refer to two possible
displacement-stress fields which satisfy the traction-free co

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
6, 1999; final revision, January 21, 2000. Associate Technical Editor: J. T. Ju.
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tions on the crack faces. The property of the path-independ
integral is proved by Bueckner using Betti’s work reciprocal the
rem, that isI G5I C .

2 Proof
For homogeneous isotropic materials, assume that the first

sible displacement-stress field is induced by the following co
plex potentialsw(z) andc(z):

w8~z!5
1

Az22a2 (
k51

1`

Ekz
k1(

k51

1`

Fkz
k21

(3)

c8~z!5
1

Az22a2 (
k51

1`

Ekz
k2(

k51

1`

Fkz
k21

whereEk and Fk are complex coefficients which can be defin
by remote conditions. Introduce a supplemental displacem
stress field defined by the following complex potentialsw (II )(z)
andc (II )(z):

w~ II !~z!52 izw8~z!
(4)

c~ II !~z!52 izc8~z!12i z̄w8~z!.

The corresponding displacement and stress components ar
rived as follows:

ui
~ II !5yui ,x2xui ,y

s i j
~ II !5ys i j ,x2xs i j ,y1

1

2E s i j ,xdy2
1

2E s i j ,ydx ~ i , j 51,2!

(5)

whereui ands i j , as the~I! field, are the displacement and stre
components induced by Eq.~3!. It can be examined that the stres
s i j

~II ! satisfy the traction-free conditions on the crack faces. Sub
tuting Eq.~5! andui ands i j into Eq. ~2!, we obtain

I G5E Fuis i j ,xy2uis i j ,yx2ui ,xs i j y1ui ,ys i j x

1
1

2
uiE s i j ,xdy2

1

2
uiE s i j ,ydxGnjds (6)

wheredx52n2ds, dy5n1ds.
Now, theI G – 2L is examined. Utilizing the equilibrium condi

tions in plane problems and noting the integral termsTiui , s i j ui
and ui*s i j ,xdy have no contribution forI G22L when r→0 ~at
the near of crack tip!. Thus,I G – 2L is equal to zero. We obtain
e
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I G52L. (7)

Equation~7! shows that between theL-integral and the Bueckne
work conjugate integral there is a simple but inherent relations
We need not to know the obvious function expressions of co
plex potentials for the crack beforehand, but the traction-free c
ditions must be satisfied.

If there are two displacement-stress fields, namely,ui , s i j and
ui

(II ), s i j
(II ), using the Betti’s reciprocal theorem to the regio

bounded by crack borders, one can divide the contourC into CL ,
CR andC1 ,C2 , whereCL ,CR are circles around the left and th
right crack tips andC1 ,C2 are the straight line along the uppe
and lower crack faces, respectively. Because the stresses ar
on the crack faces, thenI G5I CL1I CR . In this case, if integrals
I CL andI CR can be evaluated for some displacement-stress fie
then the path-independent integralI G can also be defined an
evaluated. If the displacement-stress fields are defined by Eqs~3!
and ~4!, we can deduce the following relationship between
L-integral and the stress intensity factors:

L52
3~k21!a

4m
~K1LK2L1K1RK2R! (8)

whereKL5K1L1 iK 2L , KR5K1R1 iK 2R are stress intensity fac
tors at the left and the right crack tips, respectively.k andm are
elastic constants.

3 Discussion
The complex potentials of the center crack,w1(z),v1(z),

w2(z),v2(z), were obtained by Chen and Shi@3# by using the
same method obtained the eigenfunction expansion form by R
@4# in interfacial cracks for dissimilar material. The stress a
displacement fields that are obtained from these complex po
tials satisfy the traction-free conditions on the crack faces and
continuous condition along the entire interface.

A supplemental displacement-stress field defined by
complex potentials w1

(II )(z),v1
(II )(z),w2

(II )(z),v2
(II ) is intro-

duced. The relations betweenw1
(II )(z),v1

(II )(z),w2
(II )(z),v2

(II )

andw1(z),v1(z),w2(z),v2(z) are analogous to Eq.~4!.
In a similar manner, the displacement and stress of the~II ! field

are presented in Eq.~5!. They satisfy the traction-free condition
on the crack faces also. The corresponding displacement
stress components will be substituted into Eq.~6!. Note that the
curveG can be divided into two sections: curveG1 of the upper
plane and the curveG2 of the below plane. The deductions of Eq
~6! to ~7! relate to the equilibrium equations in plane problem
and traction-free conditions only, but don’t involve the mater
parameter. The process is the same as the above homoge
isotropic material. Finally, we still obtain Eq.~7! in the interface
crack, that isI G52L.

BetweenL-integral and stress intensity factors there is the f
lowing relation:

L52S k121

m1
1

k221

m2
D 3~K1LK2L1K1RK2R!

8 cosh2~p«!
a (9)

where « is ‘‘oscillation index’’ and KL5K1L1 iK 2L , KR5K1R
1 iK 2R are complex stress intensity factors at the left and the r
crack-tips, respectively. They cannot be separated into the pu
model and II model;k1 ,m1 and k2 ,m2 stand for the materia
parameters of the upper and lower plane.

For anisotropy material, the Lekhenitski complex potent
theory needs to be used~@5#!. According to the need of the Bueck
ner work conjugate integral, the subsidiary stress-displacem
fields, which represents~II ! field, are

w~ II !~z1!52 iz1w8~z1!

c~ II !~z2!52 iz2c8~z2!12i z̄2w8~z1!. (10)
Copyright © 2Journal of Applied Mechanics
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The stress fields caused by Eq.~10! satisfy the traction-free
conditions. The relation between the~II ! field and a physical stres
field are analogous to Eq.~5!.

By proceeding in the same manner as the isotropic case f
Eq. ~6! to Eq. ~7!, we draw a conclusionI G52L.

It can be seen that a simple but inherent relation between
L-integral and the Bueckner work conjugate integral is right
along, although the characteristic of material is more comp
than isotropic and the complex potentials in these two cases
more different with in isotropic.

4 Conclusions
Using the Bueckner work conjugate integral through introdu

ing a special subsidiary stress-displacement field, one can re
the L-integral. The relation betweenL-integral and the Bueckne
work conjugate integral seems independent of the stress osc
tory singularities on the interface crack tips and the eigenroo
the anisotropy. It is found that theL-integral, from the mathemati-
cal point of view as well as in principle, is arising from the Betti
reciprocal theorem. This means that the Bueckner work conjug
integral is a more general path-independent integral than ot
are. Using the Bueckner integral through choosing a different s
sidiary stress-displacement field could render any other p
independent integrals.
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1 Summary
In this note we derive an expression for the ‘‘driving traction

or Eshelby force~@1#!, acting on a propagating interface in a co
tinuum. The interfaces that we have in mind might represent,
example, a shock wave or a boundary between two phases
material, and the thermomechanical processes which the
tinuum is permitted to undergo may or may not be adiabatic. Fr
the perspective of irreversible thermodynamics, the driving tr
tion corresponds to a ‘‘thermodynamic affinity’’; see, for e
ample,@2–4#. It plays a central role in modeling the kinetics o
phase transformations by characterizing the rate of propagatio
phase boundaries~e.g., see@5–8#!.

The derivation sketched below makes no assumptions abou
constitutive law for the continuum under consideration. Wh
specialized to a thermoelastic material, the expression for the d
ing traction obtained here has certain similarities with the L
endre transform of the Helmholtz free-energyĉ~F,u! with respect
to both the deformation gradient tensorF and the temperatureu,
as well as with the Legendre transform of the internal ene
«̂~F,h! with respect toF and the specific entropyh.

The result derived here generalizes an earlier one which
been established for non-adiabatic processes~@9,10,5#!. This
former characterization of driving traction was not valid in ad
batic processes, and therefore did not, in particular, apply to sh
waves in classical gas dynamics or to impact-induced rap
moving phase boundaries in solids. A one-dimensional versio
the present result was obtained in@11#.

2 Momentum and Energy
Consider a body which occupies a regionR in a reference con-

figuration. LetxPR denote the position of a particle in this con
figuration and lett denote time. Consider a thermomechanic
process of this body on some time interval@ t1 ,t2# which is char-
acterized by the motiony(x,t), body force per unit massb(x,t),
Piola-Kirchhoff stresss(x,t), heat fluxq(x,t), heat supplyr (x,t)
and internal energy per unit mass«(x,t). Suppose that during this
processy is continuous with piecewise continuous first and s
ond derivatives onR3@ t1 ,t2#; b(•,t) and r (•,t) are continuous
on R; s(•,t) andq(•,t) are piecewise continuous with piecewis
continuous gradient onR; and « is piecewise continuous with
piecewise continuous first derivatives onR3@ t1 ,t2#. During this
process, the usual balance laws of linear and angular momen
and the first law of thermodynamics require that for any subreg
D,

E
]D

sn dA1E
D
rb dV5

d

dt ED
rv dV, (1)

E
]D

y3sn dA1E
D
y3rb dV5

d

dt ED
y3rv dV, (2)

E
]D

~sn•v1q•n!dA1E
D
~rb•v1rr !dV

5
d

dt ED
S 1

2
rv•v1r« DdV. (3)

Herev5ẏ denotes particle velocity,r~x! is the mass density in the
reference configuration which is assumed to be continuous oR,
andn is a unit outward normal vector on]D.

At a point inR at which the fields are smooth the balance la
~1!–~3! yield the usual field equations

Div s1rb5r v̇, (4)

sFT5FsT, (5)

s•Ḟ1Div q1rr 5r«̇, (6)

whereF5Grady is the deformation gradient tensor.
830 Õ Vol. 67, DECEMBER 2000
’’
-
for
of a
on-

om
c-
-
f
n of

t the
en
riv-
g-

gy

had

a-
ock
dly

of

-
al

c-

e

tum
ion

s

Next, suppose that there is a surfaceSt in R such that the fields
F, v, q, s and« suffer jump discontinuities acrossSt while being
continuous on either side of it. Such a surface may represent
example, the Lagrangian image of a shock wave or an interf
separating two material phases. LetVn>0 denote the normal ve
locity of propagation of this interface. We refer to the side in
which Vn points as the positive side ofSt . For any field quantity

g(x,t) let g1 and g2 denote the limiting values ofg as a point on
St is approached from its positive and negative side, respectiv
Then, we let@@g## and^g& denote the jump and the average valu
of g on St :

@@g##5 g12 g2, ^g&5
1

2
~ g11 g2 !. (7)

At a point onSt , the balance laws~1!–~3! yield the usual jump
conditions

@@sn##1@@rv##Vn50, (8)

@@sn•v##1F Fr«1
1

2
rv•vG GVn1@@q•n##50. (9)

The energy jump condition~9! can be written in the following
alternative form by making use of~8! and @@v##1Vn@@Fn##50
which follows from the continuity of the deformation~for alge-
braic details see, for example,@5#!:

~@@r«##2^s&•@@F## !Vn52@@q•n##. (10)

3 Rate of Entropy Production
In order to address the second law of thermodynamics one m

consider two additional fields, viz. the temperatureu(x,t) and the
entropy per unit massh(x,t). Suppose thatu(•,t) is piecewise
continuous with a piecewise continuous gradient onR, and thath
is piecewise continuous with piecewise continuous first deri
tives onR3@ t1 ,t2#; u andh are permitted to suffer jump discon
tinuities acrossSt . The rate of entropy production associated w
a subregionD is defined by

G5
d

dt ED
rh dV2E

]D

q•n

u
dA2E

D

rr

u
dV, (11)

and the second law of thermodynamics requires thatG>0 for all
regionsD and all processes. When the regionD intersects the
interfaceSt one can rewrite~11! in the form

G5E
D
H rḣ2DivS q

u D2
rr

u J dV

2E
StùD

H @@rh##Vn1F Fq•n

u G G J dA (12)

by carrying out a standard calculation; e.g. see page 116 of@12#.
The first term in~12! represents the entropy production rate in t
bulk of the body and the second term is associated with the m
ing interface. LetGs denote the rate of entropy production due
the propagating surface:

Gs52E
St

H @@rh##Vn1F Fq•n

u G G J dA. (13)

One finds by using~13! and ~10!, that Gs can be alternatively
expressed as

Gs5E
St

H F K 1

uL ~@@r«##2^s&•@@F## !2@@rh##GVn

1^q•n&F F1

uG G J dA. (14)
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In an adiabatic process there is no heat transfer:q50 and r
50. On the other hand if the process is not adiabatic, the typ
heat conduction law, whatever it may be, involves Gradu and
therefore the partial differential equations resulting from using
constitutive relationships in the energy Eq.~6! involve ~at least!
the second spatial derivative ofu; thus, one usually requires th
temperature to be continuous in non-adiabatic processes:@@u##50
on St . Thus in both the adiabatic and non-adiabatic cases one

@@u##q
6

50 on St and therefore necessarily

^q•n&F F1

uG G50 and S K 1

uL 2
1

^u& D @@q•n##50. (15)

In view of this and~10!, we can writeGs as

Gs5E
St

@@r«##2^s&•@@F##2^u&@@rh##

^u&
Vn dA, (16)

or in terms of the Helmholtz free-energyc5«2hu as

Gs5E
St

@@rc##2^s&•@@F##1^rh&@@u##

^u&
Vn dA. (17)

4 Driving Traction
The rate of entropy production due to the propagating interf

can be written as

Gs5E
St

f Vn

^u&
dA (18)

where

f 5@@rc##2^s&•@@F##1^rh&@@u##

5@@r«##2^s&•@@F##2^u&@@rh## (19)

is called the driving traction or Eshelby force. The second law
thermodynamics requires thatf Vn>0 on St which specifies the
direction in which the interface is permitted to move. This resul
valid for any continuum undergoing an arbitrary thermomecha
cal process which may or may not be adiabatic. If the proces
adiabatic,~19! and ~10! yield f 52^u&@@rh##. If it is not adia-
batic, ~19! specializes tof 5@@rc##2^s&•@@F##.

In the special case of a thermoelastic material one
c5ĉ~F,u! and the stress and entropy are given by the constitu
relationshipss5rĉF , h52ĉu . Equivalently one has«5«̂~F,h!
with the stress and temperature given bys5r«̂F , u5 «̂h . Thus
for a thermoelastic material~19! can be written as

f 5@@rĉ##2^rĉF&•@@F##2^rĉu&@@u##

5@@r«̂##2^r«̂F&•@@F##2^r«̂h&@@h## (20)

which is reminiscent of the Legendre transforms ofrĉ~F,u! and
r«̂~F,h!.
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Characterizing Damping and
Restitution in Compliant Impacts
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1 Introduction
Time-domain models for compliant impacts have been wid

used to model collision dynamics as finite-time events. The m
common way to account for energy dissipation in the compli
impact model has been via the standard Kelvin-Voigt~K-V ! vis-
coelastic model

F~ t !5kx1cẋ (1)

in which the resulting equation of motion assumes the fami
linear form

ẍ12zvnẋ1vn
2x50 (2)

from vibration theory wherevn5Ak/m and z5c/(2Akm). The
initial conditionsx(0)50 andẋ(0)5v0 yield the solution

x~ t !5
v0

vd
exp~2zvnt !sinvdt (3)

wherevd5vnA12z2. If the impact duration is assumed to be
half-period of vibration associated with the damped frequen
then the exact restitution coefficient is obtained easily in terms
the dimensionless damping ratio as
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e52
ẋ~ t r !

ẋ~0!
5expS 2

zp

A12z2D (4)

wheret r5p/vd is the release time~@1,2#!. While the undamped
collision is elastic, for critical damping or overdamping the col
sion is purely plastic. Another reason the half-period K-V mod
has been widely used is that Eq.~4! may easily be used to obtai
the impact damping parameterc as

c52u ln euA km

~ ln e!21p2 (5)

in terms of an experimentally obtained restitution coefficient~@3#!.
The energyEL lost in the impact is

EL5E0~12e2!5E0S 12expS 2
2zp

A12z2D D (6)

whereE0 is the initial kinetic energy. This energy loss is repr
sented in Fig. 1 by the area enclosed inside the hysteresis c
O-A-B-D-O. The peak elastic potential energy stored in the i
pact is

U5
1

2
kxmax

2 5E0 expS 2
2z

A12z2
tan21

A12z2

z D (7)

from which an equivalent linear damping ratiozeq may be found
via the loss factorh5EL /(2pU) as

zeq5
h

2
5

1

4p
expS 2z

A12z2
tan21

A12z2

z D
3S 12expS 2

2zp

A12z2D D (8)

Thus the bilinear impact model may be replaced by an equiva
linear Kelvin-Voigt model with damping constantceq
52zeqAkm which dissipatesEL energy per period of vibration
This technique is often advantageous in vibratory impact pr
lems.

Hunt and Crossley@4# noticed, however, that linear viscou
damping in the K-V model gives an unrealistic hysteresis diagr
for the impact force-deflection curve. Specifically, they noted t

Fig. 1 Hysteresis diagrams for the Kelvin-Voigt „solid …, Max-
well „dotted …, and standard linear impact models with vnÄ1
and zÄ0.1 where hÄ0.0 „solid …, 0.05 „long-dashed …, 0.2 „short-
dashed …, and 0.4 „short-long-dashed …. The modified K-V and
standard linear models omit the tension at the conclusion of
the restitution phase of impact.
832 Õ Vol. 67, DECEMBER 2000
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the parallel linear dashpot results in discontinuous force profile
initial contact and release as well as a nonphysical tensile fo
applied during the end of the restitution phase. In order to eli
nate this force discontinuity, they suggested a nonlinear damp
function for use with the Hertzian stiffness model which compl
with the expected boundary conditions of vanishing force
contact and release. Estimates of the corresponding restitu
coefficient in terms of the model’s damping parameters w
made by the above authors and Herbert and McWhannell@5#,
who also noted that the effects of eliminating the force disco
nuities include a more realistic frequency content in the impu
generated.

While other authors~e.g., @6,7#! have proposed different non
linear models which also satisfy the expected boundary co
tions, there have been few efforts to eliminate the force disco
nuities in the K-V model while remaining within the framewor
of linear viscoelasticity. This paper attempts to help fill this ga
In contrast to using the various nonlinear models, this appro
enables the associated damping and restitution to be characte
analytically without the need to approximate. First, the stand
K-V model is reconsidered here under a different assumption
garding the restitution phase: that the mass releases when
forcevanishes—beforethe initial contact location is reached. Th
approach was recently used by Luo and Hanagud@8# in order to
improve the modeling and simulation of vibration absorbers w
motion-limiting stops. In order also to guarantee that the fo
vanishes upon impact, higher-order viscoelastic~Maxwell and
standard linear! models are implemented in which the bounda
conditions in the force-displacement hysteresis curve are all s
fied and the force history is entirely continuous. A similar mod
for the impact surface has been utilized in a previous paper~@9#!
in an effort to circumvent the previously mentioned discontin
ties in the dynamic model of robotic manipulator collisions. U
like these studies which were concerned with simulation, ho
ever, this paper presents analytical values of the restitu
coefficient and related quantities for the viscoelastic models
terms of the dimensionless viscoelastic parameters. Hyste
diagrams and restitution coefficients for each model are plo
and compared.

2 Modified K-V Model
In order to eliminate the tension in the K-V model, a bett

representation of the dynamics allows the mass to release w
the net force vanishes. In Fig. 1, this occurs at point C. T
resulting area of the hysteresis curve O-A-B-C-O~the energy
loss! is thus smaller than that obtained using a half-period
vibration. Setting the force in Eq.~1! to zero, the release time i
found as

t r5
1

vd
tan21S 2zA12z2

2z221 D (9)

which yields the restitution coefficient

e5expS 2
z

A12z2
tan21S 2zA12z2

2z221 D D ; z,1 (10)

As z→1,e→exp(22)'0.14 so that, unlike the half-period ver
sion, the impact is not perfectly plastic when the damping is cr
cal. Instead, the nonzero restitution coefficient

e5S z2Az221

z1Az221
D z/Az221

; z.1 (11)

which matches Eq.~10! for z51 is obtained for overdamping. Th
energy lost in an impact isEL5E0(12e2). Since the peak
potential energy is given by Eq.~7! for z,1 and byU5E0e for
z.1, the equivalent linear damping ratio may be obtained as
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zeq55
1

4p
expS 2z

A12z2
tan21

A12z2

z D S 12expS 2
2z

A12z2
tan21S 2zA12z2

2z221 D D D ; z,1

1

2p
sinhS 2z

Az221
lnS z2Az221

z1Az221
D D ; z.1

(12)
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from which an equivalent damping constant for use in vibrat
impact isceq52zeqAkm. Although zeq is less than in the half-
period model, the difference remains less than 0.02 forz,1. Thus,
eliminating the force discontinuity at release results in a minim
decrease in equivalent damping.

3 Maxwell Model
The force discontinuity at impact cannot be eliminated

the K-V model due to the model’s lack of an instantaneous e
ticity. Instead, a higher-order viscoelastic model which portra
instantaneous elasticity may be utilized. The most basic of the
the Maxwell model in which the force-displacement relation
~@10#!

F1
c

k
Ḟ5cẋ. (13)

Equation~13! results in the third-order differential equation

x̂12zvnẍ1vn
2ẋ50 (14)

describing the impact dynamics wherevn5Ak/m and z
5Akm/(2c). The initial conditions x(0)50, ẋ(0)5v0 , and
ẍ(0)50 yield the solution

x~ t !5exp~2zvnt !S v0

vd
~122z2!sinvdt2

2zv0

vn
cosvdt D

1
2zv0

vn
(15)

wherevd5vnA12z2.
As seen in Fig. 1~hysteresis curve O-E-F-O!, the discontinuity

upon impact has been eliminated via the third initial conditio
Furthermore, if release occurs when the force vanishes the
boundary conditions are satisfied. Since the release time is eq
lent to a half-period (t r5p/vd), the restitution coefficiente and
energy lostEL are thus found to be equivalent to those obtained
the half-period K-V model. Thus asz→1,e→0 and the collision
becomes perfectly plastic. Since Eq.~4! also applies for the Max-
well model, the damping parameter is easily calculated in term
the coefficient of restitution~as in the K-V model! as

c5
Akm~~ ln e!21p2!

2u ln eu
. (16)

Because the spring and dashpot are in series, the peak e
potential energy stored in the spring is found in terms of
maximumforce as

U5
1

2
kS Fmax

k D 2

5E0 expS 2
2z

A12z2
tan21

A12z2

z D . (17)

The equivalent linear damping ratio, therefore, is also equiva
to that for the half-period K-V model so that the Maxwell impa
model may be replaced by a linear K-V model withceq
52zeqAkm which dissipatesEL energy per period of vibration. I
should be observed that, although certain quantities of the h
period K-V and Maxwell impact models are conveniently equiv
lent, their inherent physics are completely different as represe
by the corresponding hysteresis curves.
Journal of Applied Mechanics
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4 Standard Linear Model
Another instantaneously elastic higher-order viscoelastic mo

which can be utilized is the standard linear model which cons
of a K-V element~with spring constantk2! in series with another
springk1 . The force-displacement relation is~@10#!

~k11k2!F1cḞ5k1k2x1k1cẋ. (18)

Equation~18! results in the third-order equation

2zh

vn
x̂1 ẍ12zvnẋ1vn

2x50 (19)

for the impact dynamics wherevn5Ak1k2 /((k11k2)m), while
z5k1c/(2(k11k2)mvn) andh5k2 /(k11k2) are the dimension-
less viscoelastic parameters. In the limit ask1→`, then vn
→Ak2 /m,2zvn→c/m,h→0, and the system becomes a K-
model with natural frequencyvn and damping ratioz. Hence for
h!1, Eq. ~19! represents a perturbation of the standard K
model~Eq. ~2!!. Although the exact solution and restitution coe
ficient are intractable in this model, an approximate closed-fo
solution may be obtained be means of a singular perturba
technique~@11#! in which the three rootsa and b6 ig are ob-
tained to first order inh as

a52
vn

2zh
12zvn1h~124z2!zvn

b52zvn1h~124z2!zvn

g5vnA12z21h~324z2!
z2

A12z2
vn . (20)

The perturbation series converges providingz,1/(2Ah).
The force-displacement hysteresis curves in Fig. 1 corresp

to different values of the dimensionless parameterh. This param-
eter affects the model’s instantaneous elasticity and can be
justed to sufficiently ‘‘smooth out’’ the K-V force discontinuity a
the origin. By allowing the mass to release at vanishing for
each of the force boundary conditions remain satisfied. Hence
small values ofh, the damping and restitution for this model a
perturbations of those for the modified K-V model. The restituti
coefficient was found forz,1 to first order inh as

e5expS S 2
z

A12z2
1h f 1~z!D S tan21S 2zA12z2

2z221 D 1h f 2~z! D D
(21)

where f 1(z) and f 2(z) were found to expand asf 1(z)5z2z3/2
1O(z5) and f 2(z)52z23z31O(z5). These approximations ar
accurate for smallz and break down forz near unity. In order to
verify the analytical expression in Eq.~21! using the expansions
for f 1(z) and f 2(z), the restitution for differenth values was also
obtained numerically from the final velocity at release. It w
found that the two results are practically identical for small valu
of both h and z. Finally, unlike the previous models considere
an equivalent linear damping ratio is not easily obtained for t
model in terms ofh andz.

5 Discussion
The restitution coefficients for each of the viscoelastic imp

models are plotted as a function ofz in Fig. 2 in which the half-
DECEMBER 2000, Vol. 67 Õ 833
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period K-V and Maxwell results are identical. The numerical
sults for the standard linear model are shown for several value
h. The corresponding perturbation results~not shown! are essen-
tially the same for smallh and z. It is seen that the restitution
coefficient of the half-period K-V and Maxwell models indee
vanishes asz→1. Hence, a finite damping constantcp may be
associated with purely plastic impacts in these two models wh
cp52Akm for K-V and cp5Akm/2 for Maxwell. In the modified
K-V model, however, the restitution vanishes only asz→` so that
the impact can never be purely plastic. It is also seen that
modified K-V model has a restitution coefficient which is ve
close to that of the half-period K-V and Maxwell models for sm
damping ratios since the release times in these models for
damping are nearly the same. The advantages of analytically
taining both the impact damping parameter~in terms of an experi-
mentally obtained restitution coefficient! and the equivalent linea
damping constant for use in vibroimpact, together with the e
more significant fact that all of the force boundary conditions
satisfied, leads to the conclusion that the Maxwell model is
attractive choice for practical implementation in the modeling
dissipative compliant impacts. However, the standard lin
model may also be helpful in ‘‘smoothing out’’ the K-V impac
discontinuity. Especially if the impact duration is relatively lon
or there are additional static forces on the impact surface,
finite static deformation of this model is preferable to the flu
like behavior of the Maxwell model. Furthermore, if the dampi
is small and the instantaneous stiffness is large, then the im
dynamics and restitution may be found as a perturbation of th
for the modified K-V model as was done here. Finally, furth
work is needed to extend these results to general planar and t
dimensional collision theories and to include the use of kine
and energetic restitution coefficients.
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The purely elastic stability and bifurcation of the one-dimensio
plane Poiseuille flow is determined for a large class of Oldro
fluids with added viscosity, which typically represent polymer
lutions composed of a Newtonian solvent and a polymeric sol
The problem is reduced to a nonlinear dynamical system using
Galerkin projection method. It is shown that elastic normal stre
effects can be solely responsible for the destabilization of the b
(Poiseuille) flow. It is found that the stability and bifurcation pic
ture is dramatically influenced by the solvent-to-solute visco
ratio, «. As the flow deviates from the Newtonian limit and«
decreases below a critical value, the base flow loses its stabi
Two static bifurcations emerge at two critical Weissenberg nu
bers, forming a closed diagram that widens as the level of e
ticity increases.@S0021-8936~00!00703-0#

1 Introduction
While the problem of stability of plane-Poiseuille flow~PPF!

has been extensively investigated for Newtonian fluids, relativ
little attention has been devoted to the flow of viscoelastic flui
The presence of viscoelasticity is expected to dramatically a
the stability and bifurcation picture in PPF, and yet no study h
so far predicted the nonlinear bifurcation from the base flow. T
presence of additional nonlinearities that are usually part of
realistic constitutive model~@1#! are expected to lead to the depa
ture from the Newtonian picture. Similarly to the case of Taylo
Couette flow, there is experimental evidence that the base flo
a channel may lose its stability as a result of fluid elasticity ins
the tube~@2#!. This mechanism is now known as constitutive i
stability, as opposed to stick-slip induced instability. This mec
nism of loss of stability should not be confounded with the sho
wave instability due to a change in type of the field equatio

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
28, 1999; final revision, July 27, 1999. Associate Technical Editor: A. K. Mal.
2000 by ASME Transactions of the ASME
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which is known as Hadamard instability~@3#!. The emergence o
surface instability at the exit of an extrusion die~sharkskin and
melt fracture! keeps hinting at the possibility of a link with
hydrodynamic instability inside the channel, away and upstre
from the exit~@4,5#!. However, linear stability analyses of chann
~Couette and Poiseuille! flows, using elementary constitutiv
models, such as Maxwell and Oldroyd-B fluids, failed to ass
that the base flow may be linearly unstable when the leve
elasticity ~Weissenberg number! exceeds a critical level~@4,5#!.
More recent studies based on more generalized constitutive m
els of the Oldroyd class showed that the base flow in a cha
can become unstable to small perturbations for some rang
Weissenberg numbers~@6–8#!. These generalized constitutiv
models display a nonmonotonic shear-stress/shear-rate curve
range of instability coincides with the negative slope of the str
curve. However, only linear stability analyses were carried ou

The present study focuses on the nonlinear constitutive in
bility of the PPF of high-molecular-weight fluids. These fluids a
typically composed of a Newtonian solvent and a polymeric s
ute. The Johnson-Segalman~JS! constitutive model is used, which
is a highly nonlinear equation, and is one of the very few con
tutive models that exhibit a nonmonotonic stress/shear-rate cu
It is thus expected that, while the presence of inertia and sh
thinning alone can destabilize the flow, fluid elasticity or norm
stresses will give rise to additional nonlinearities and coupl
among the flow variables, making an already complex prob
~due mainly to inertia! even more difficult to solve. Similarly to
any flow in the transition regime, the PPF of viscoelastic flu
involves a continuous range of excited spatio-temporal scales
order to assess the influence of the arbitrarily many smaller len
and time scales on the flow, one would have to resort to
resolution of the flow at the small-scale level. This issue rema
unresolved since, despite the great advances in storage and
of modern computers, it will not be possible to resolve all of t
continuous ranges of scales in the transition regime.

It is by now well established that dynamical systems can b
viable alternative to conventional numerical methods as
probes the nonlinear range of flow behavior~@9#!. Dynamical sys-
tems are obtained using the Galerkin approximation. The velo
and stress components assume truncated Fourier or other orth
nal representations in space, depending on the boundary co
tions. The expansion coefficients are functions of time alone, t
leading to a nonlinear system upon projection of the equati
onto the various modes. The relative simplicity of dynamical s
tems, and the rich sequence of nonlinear flow phenomena ex
ited by their solution, have been the major contributing factors
their widespread use as models for examining the onset of n
linear behavior. The dynamical system approach has typic
been used to handle simple flow configurations, and most par
larly Newtonian flows. Recently, this approach has been
tempted for non-Newtonian flows in thermal convection~@10–
12#! and rotating flow ~@13–17#!. For Taylor-Couette flow,
comparison was carried out with the experiments of Muller et
@18#, leading to excellent agreement~@15#!. A modal expansion
similar to that in@14,15# is used to solve the current problem.

2 Problem Formulation and Solution Procedure
Consider the plane channel~Poiseuille! flow of an incompress-

ible viscoelastic fluid of densityr, relaxation timel, and viscosity
h. In this study, only fluids that can be reasonably represented
a single relaxation time and constant viscosity are considered.
fluid considered here, is a polymer solution composed of a N
tonian solvent and a polymer solute of viscositieshs and hp ,
respectively. Thereforeh5hs1hp . The velocity, time, space co
ordinates, pressure, and stress are nondimensionalized byd/l, l,
d, hpU/d andhp /l, respectively. HereU is the maximum veloc-
ity of the base Poiseuille flow, andd is the gap between the tw
plates. There are three important similarity groups in the probl
Journal of Applied Mechanics
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namely, the Reynolds number, Re, the Weissenberg number,
and the solvent-to-solute viscosity ratio,«, which are given, re-
spectively, by

Re5
d2r

hpl
, We5

Ul

d
, «5

hs

hp
. (1)

The continuity and conservation of momentum equations fo
general incompressible viscoelastic fluid are given in dimensi
less form as

¹•u50, Re
du

dt
52We¹p1¹•t1«¹2u (2)

whereu is the velocity vector,p is the pressure,t is the polymeric
contribution of the stress tensor,t is the time,d/dt is the substan-
tial derivative operator, and¹ is the gradient operator. The con
stitutive equation adopted in this study belongs to theOldroyd
class of incompressible viscoelastic fluids:

dt

dt
2S 12

z

2D @~¹u! t
•t1t•¹u#1

z

2
@¹u•t1t•~¹u! t#

5¹u1~¹u! t (3)

where (¹u) t denotes the transpose of¹u. Equation~3! includes
both lower and upper-convective terms. It is often referred to
the Johnson-Segalman model~@19#!. Here zP@0,2#, which is a
dimensionless material~slip! parameter. The value ofz is a mea-
sure of the contribution of nonaffine motion to the shear tens
For z50, the motion is affine and the Oldroyd-B model is reco
ered, whereas forz52, the motion is completely nonaffine an
the model is reduced to the Oldroyd-Jaumann model~@4#!. When
z50 and hs50, the upper-convected Maxwell model
recovered.

If the x-axis is taken to lie halfway between the two plates, a
y is the coordinate in the transverse direction, then the total sh
stress corresponding to the base~Poiseuille! flow is given by

Txy
b 5«ġ1

ġ

11z~22z!ġ2 5Wey (4)

where ġ5du/dy is the shear rate andu is the velocity in the
x-direction. Note that We is the dimensionless driving press
gradient. Equation~4! is perhaps the most revealing result of th
JS model. It reflects the possibility of a nonmonotonic behav
for the stress/shear-rate relation. Indeed, Fig. 1 shows the beh
of the shear stress,Txy

b , as a function ofġ for «P@0,1# and z

Fig. 1 Steady-state shear stress versus shear-rate curves for
zÄ0.2 and ««†0,1‡. The loci of the two extrema are also shown,
which join into one curve denoted here by ġc . The curves in
the figure resemble the pressure Õstretch-ratio related to the in-
flation of a Mooney-Rivlin material „see Fig. 2 in †20‡….
DECEMBER 2000, Vol. 67 Õ 835
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50.2. The curve«51 corresponds essentially to the Newtoni
limit. For this value of the viscosity ratio, the elastic contributio
to Txy

b in expression~4! is negligible. In this case Newton’s law o
viscosity applies. The figure indicates that the stress curves
monotonicity for«,1/8. Two extrema~a maximum and a mini-
mum! appear, which tend to merge as« increases, as indicated b
the curve joining the loci of the extrema. The base flow is found
be unstable for the range of the stress curves with negative s
This situation is reminiscent of the load/deformation behavior
elasticity. In the case of nonlinear inflation of a Mooney-Rivl
~hyperelastic! membrane, for instance, the pressure also exhibi
similar behavior as function of the stretch ratio for vario
Mooney constants~@20#!. Upon comparison with the curves i
Fig. 1, the curve«50 is comparable to that of a Neo-Hookea
solid, while the curve for a Newtonian fluid («51) is comparable
to the curve of a Hookean solid~see Fig. 2 in@20#!.

The solution of the system~1!–~2! is carried out using the
Galerkin projection method. For one-dimensional disturba
along the channel~x-axis!, the departure~from base flow! is re-
duced to the axial velocity,u(y,t), normal stress difference
N(y,t), and shear stress,S(y,t). In this case, Eqs.~1!–~3! reduce
to

Reut5«uyy1Sy (5a)

Nt52N12~WeS1Suy1Sbuy!. (5b)

St52S1uy1a~WeN1Nuy1Nbuy! (5c)

where a5z(z/221). Here Sb5ġ/11z(22z)ġ2 is the non-
Newtonian contribution of the shear stress of the base flow,
Nb52ġ2/11z(22z)ġ2 is the corresponding first normal stre
difference. Note that a subscript in Eqs.~5! denotes partial differ-
entiation. The flow departure is represented by series of Ch
drasekhar functions, which satisfy the homogeneous~no-slip!
boundary conditions~@15#!. A judicious selection process an
truncation level is applied for the choice of the various modes
order to ensure the physical and mathematical coherence o
final model.

3 Bifurcation and Stability Picture
While the~linear! stability picture is somewhat predictable, th

bifurcation picture is far from being intuitively obvious. The b
furcation diagrams depend strongly on« andz. We thus monitor
the influence of the viscosity ratio by fixing the parameterz to 0.2

Fig. 2 Bifurcation diagrams for the normal stress difference,
N„0,`…, at the center of the channel as function of We for z
Ä0.2 and ««†0.06,0.08‡. The smallest diagram corresponds to
the highest viscosity ratio, «. As « exceeds a critical level „in
this case 1 Õ8…, the „closed … diagram reduces to zero, as the
base flow is always stable. The branches AB, CD, EF, and GH of
diagram «Ä0.06 are unstable, whereas the branches BC, DE,
EF, FG, and HA are stable.
836 Õ Vol. 67, DECEMBER 2000
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and varying«. Figure 2 displays the resulting bifurcation diagram
in the ~N, We! plane for«P@0.06, 0.08#. The figure shows the
dependence of the steady-state normal stress difference,N(0,̀ ),
at the center of the channel. Linear stability analysis asserts
for large« value ~.1/8!, the base flow is stable~to small pertur-
bations! for any value of We. This situation corresponds to
monotonic shear-stress/shear-rate curve in Fig. 1. As« decreases,
two extrema appear in the stress curves in Fig. 1, entraining a
of stability of the base flow in between. For each«.1/8, a closed
bifurcation diagram emerges as depicted in Fig. 2, which show
widening of the unstable range of We values as the viscosity r
decreases.

Although the case«50.06 will be discussed in detail below, w
examine first the evolution of the bifurcation and stability pictu
as the flow deviates from close to the Newtonian limit~this limit
is approached when the solvent-to-solute viscosity ratio,«, is
high!. As « decreases below a critical value, two static bifurc
tions emerge at two critical values, Wec1 and Wec2 , of the Weis-
senberg number as predicted by linear stability analysis. The
critical points coincide with points A and E for the«50.06 dia-
gram. The two bifurcating branches join over the unstable ra
to form a closed diagram. This is clearly illustrated for«50.08;
the closed diagram intersects the We axis at Wec158.48 and
Wec2516.53. As« decreases further, the~closed! diagram wid-
ens, and another closed diagram appears as depicted in Fig.
«50.076. In this case, there are four critical values of the We
senberg number that are present at 8.4, 17, 30, and 34.5.
second range of We values~30 to 34.5! corresponds to unstabl
base flow. A stable range exists between the two diagrams. A«
decreases further, the two diagrams grow, come in contact
one another, and finally merge to form a simply connected clo
diagram as shown in Fig. 2 for«50.06. In this case, the range o
instability of the base flow becomes larger as it covers the va
7.54,We,48.5~between A and E!. The figure also indicates tha
the solution branch changes concavity, and presents regions a
nating in stability.

In general, and as typically depicted by the«50.06 diagram,
there is an exchange of stability at the two critical points Wec1 ~A!
and Wec2 ~E!, with the base flow losing its stability at Wec1 and
regaining it at Wec2 . However, the base flow is not always un
conditionally stable for We,Wec1 and We.Wec2 ; simulta-
neously, the diagram«50.06 is not always unconditionally stabl
for Wec1,We,Wec2 . We have indicated in Fig. 2 the variou
branches of alternating stability of the«50.06 diagram. Thus,
branches AB, CD, EF, and GH are unstable, while the branc
BC, DE, FG, and HA are stable. Consequently, close to e
critical point, just before Wec1 and just after Wec2 , there is a
branch, BC and FG, respectively, to which the flow can conve
if the perturbation is not small, similarly to what occurs in th
vicinity of transcritical and subcritical bifurcations. Althoug
there are stable and unstable nontrivial branches in the ra
Wec1,We,Wec2 , there is total loss of stability of the base flow
In this range, only nonlinear velocity profiles are stable. The s
bility of the branches at the two critical points was establish
numerically since linear stability analysis cannot be applied in
vicinity of the critical ~nonhyperbolic fixed! points.

It is, perhaps, at this stage that one begins to connect the
bility and bifurcation picture to physical reality. It is well know
that in real systems, physical instabilities are observed when
flow rate and/or the level of elasticity are high. These instabilit
are believed to be potentially responsible for the onset of surf
roughness in extrusion@10#. If we note that the flow rate is con
trolled by We, and the level of elasticity controlled by both W
and«, then we can clearly observe that the trend shown in Fig
confirms that both the flow rate and fluid elasticity are the de
mining factors behind the destabilization of the base flow. It
also well known that instabilities are suspected to set in after
Weissenberg number has reached a certain value. This is
Transactions of the ASME
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inferred from Fig. 2, as the diagram corresponding to«50.06, for
instance, indicates that the base flow is practically unstable for
whole range We.7.5.

In summary, a nonlinear analysis is carried out to examine
onset of constitutive instability and bifurcation for polymer sol
tions. Only elastic effects, which lead to the well-known Weiss
berg rod-climbing phenomenon, are responsible for the loss
stability of the base~Poiseuille! flow. The viscoelastic model use
displays nonmonotonicity of the shear-stress/shear-rate curve
belongs to the wider class ofOldroyd constitutive models tha
lead to the destabilization of channel flow. The bifurcation d
grams are obtained for the first time, and show how the secon
flow evolves as one deviates from the Newtonian limit. The
furcation diagrams are always closed and widen in range as
solvent-to-solute viscosity decreases, thus reflecting the desta
zation observed in practice as the level of elasticity increases.
emphasized that the present stability and bifurcation picture
responds to perturbations of infinite wavelength, which may
be the most dangerous modes. Only a higher-dimensional stab
analysis can indicate whether the present findings are of phy
relevance.
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This paper develops the displacement field for a circular me
brane which is statically loaded by gravity acting in its plan
Coupled to the displacements are the stress and strain distr
tions. The solution is applicable to the modeling of next gene
tion lithographic masks, ion-beam projection lithography mas
in particular. @S0021-8936~00!00803-5#

1 Introduction
In most engineering applications, the displacement, stress,

strain fields induced by gravity are negligible. However, in ne
generation~nonoptical! lithography masks used for semiconduct
device fabrication, it is critical to predict and compensate for d
tortions which could potentially alter the quality of the microci
cuit that is to be manufactured. Typically, the allowable error in
lithographic mask is only a fraction of the microcircuit’s min
mum feature size~@1#!. Since ion-beam projection lithograph
~IPL! is targeting the production of sub-100 nm devices, displa
ments due to gravity can be significant.

An IPL mask is composed of a circular membrane that is s
ported by a relatively stiff frame and held in a vertical orientati
during exposure~@2#!. It is typically made of silicon with a diam-
eter on the order of 200 mm and 3.0-mm thickness. If the mask is
modeled as a circular membrane that is constrained on its pe
eter by a rigid ring and subjected to in-plane gravitational load
~as shown in Fig. 1!, it can be considered as a plane stress pr
lem and solved directly by traditional applied elasticity metho
To the best of the authors’ knowledge, a solution to this probl
has not been presented in the elasticity literature.

2 Solution Development
The position of an arbitrary point on the membrane is defin

by the polar coordinates (r ,u) with the origin taken at the center
All translational displacement components are constrained at
outside radius,R. In general, radial~u! and circumferential (v)
displacements which arise from the loading of the membrane
related to the radial strain (« r), circumferential strain («u), and
shear strain (g ru) by strain-displacement equations, and to rad
normal stress (s r), circumferential normal stress (su), and shear
stress (t ru) by Hooke’s law, i.e.,

« r5
]u

]r
5

1

E
~s r2nsu! (1)
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«u5
u

r
1

1

r

]v
]u

5
1

E
~su2ns r ! (2)

g ru5
1

r

]u

]u
1

]v
]r

2
v
r

5
2~11n!

E
t ru . (3)

Here,E is Young’s modulus andn is Poisson’s ratio. Equilibrium
of the shaded element shown in Fig. 1 requires that

s r2su

r
1

]s r

]r
1

1

r

]t ru

]u
2rg sinu50 (4)

1

r

]su

]u
1

]t ru

]r
1

2

r
t ru2rg cosu50 (5)

where r and g are the material mass density and gravitatio
acceleration, respectively.

A solution form which uses Airy’s stress function,f, can be
expressed as

s r5
1

r

]f

]r
1

1

r 2

]2f

]u2 1F~r ,u! (6)

su5
]2f

]r 2 1G~r ,u! (7)

t ru52
]

]r S 1

r

]f

]u D (8)

where F(r ,u) and G(r ,u) are arbitrary functions. Substitutin
Eqs.~6!–~8! into the equilibrium Eqs.~4! and~5! and subsequen
integration yields

G~r ,u!5rgr sinu1G2~r ! (9)

F~r ,u!5rgr sinu1
F2~r !

r
1

1

r E G2~r !. (10)

To preclude singular stresses, and without loss of generality
F2(u)5G2(r )50. Therefore,

s r5
1

r

]f

]r
1

1

r 2

]2f

]u2 1rgr sinu (11)

su5
]2f

]r 2 1rgr sinu. (12)

General forms off satisfying compatibility were originally
given by Michell@3# for problems described in polar coordinate
From Timoshenko’s~@4#! summary of this,

Fig. 1 In-plane gravity loading of a circular membrane
838 Õ Vol. 67, DECEMBER 2000
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let
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f5a0 log r 1b0r 21c0r 2 log r 1d0r 2u1a08u1
a1

2
ru sinu

1~b1r 31a18r
211b18r log r !cosu2

c1

2
ru cosu

1~d1r 31c18r
211d18r log r !sinu

1(
n52

`

~anr n1bnr n121an8r
2n1bn8r

2n12!cosnu

1(
n52

`

~cnr n1dnr n121cn8r
2n1dn8r

2n12!sinnu. (13)

A stress function which gives nonperiodic or singular stresse
not admissible. Therefore, all the terms except those with coe
cients ofb0 , b1 , d1 , an , bn , cn , anddn will be dropped. So, for
n52,3,4, . . .

f}r n~sinnu,cosnu! (14)

~s r ,su!}r n22~sinnu,cosnu! (15)

t ru}r n22~cosnu,sinnu!. (16)

On a circular edge, Eqs.~14!–~16! describe normal and shea
stresses which vary harmonically. They are not necessary to s
the basic problem. Indeed, they may lead to displacements w
cannot be zero at the boundaryr 5R. Thus, a solution may be
constructed using relevantf’s established by Michell, plus addi
tional terms associated with the gravitational body forces:

f5b0r 21b1r 3 cosu1d1r 3 sinu. (17)

By the definition established in Eq.~8!,

t ru52b1r sinu22d1 r cosu. (18)

Due to the symmetric nature of the problem,t ru(r ,p/2)50.
Therefore,b150. Similarly, Eqs.~11! and ~12! show that

s r52b012d1r sinu1rgr sinu (19)

su52b016d1r sinu1rgr sinu. (20)

Because it is associated with a hydrostatic loading such as
form membrane prestress,b0 will also be discarded. This leave
one unknown,d1 , which can be identified by noting that the ci
cumferential normal strain is zero on the boundary, i.e.,«u(R,u)
50. By using Eqs.~19!, ~20!, and~2!, this yields

d15
2rg

2

~12n!

~32n!
(21)

and the stresses can now be written in the form

s r5
2rg

~32n!
r sinu (22)

su5
2rgn

~32n!
r sinu (23)

t ru5rg
~12n!

~32n!
r cosu. (24)

Employing Eqs.~1!–~3!, boundary conditions, and symmetry co
ditions gives the following strains and displacements in the me
brane:

« r~r ,u!5
2rg

E

~12n2!

~32n!
r sinu (25)

«u~r ,u!50 (26)
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g ru~r ,u!5
2rg

E

~12n2!

~32n!
r cosu (27)

u5
rg

E

~12n2!

~32n!
~r 22R2!sinu (28)

v5
rg

E

~12n2!

~32n!
~r 22R2!cosu. (29)

The displacement component distributions given by Eqs.~28! and
~29! are illustrated in Figs. 2 and 3.

Transformation of the stress components into anx-y coordinate
system yields

sx5
2rgn

~32n!
y (30)

sy5
2rg

~32n!
y (31)

txy5
rg~12n!

~32n!
x; (32)

wherex andy are Cartesian coordinates,sx is the normal stress in
the x-direction,sy is the normal stress in they-direction, andtxy
is the in-plane shear stress. As required, these stresses s
equilibrium equations inx andy, and the associated displaceme
components vanish on a circular boundary.

3 Conclusion
An elasticity solution for the in-plane gravitational loading of

circular membrane has been established. Stress, strain, and

Fig. 2 Radial displacement contours. Range is Árg „1
Àn2

…R2ÕE„3Àn….

Fig. 3 Circumferential displacement contours. Range is
Árg „1Àn2

…R2ÕE„3Àn….
Copyright © 2Journal of Applied Mechanics
tisfy
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placement fields satisfy symmetry, boundary conditions, equi
rium, compatibility for a linear elastic material, and a
singularity-free.

The solution is useful for predicting the distortion of mas
used in next generation lithography processes. It is particul
appropriate to modeling the ion-beam lithography mask, wh
consists of a large circular membrane supported by a frame
wafer ring while it is in a vertical orientation.
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The finite element method is employed in this paper to investi
free-vibration problems of a spinning stepped Timoshenko be
consisting of a series of uniform segments. Each uniform segm
is considered a substructure which may be modeled using b
finite elements of uniform cross section. Assembly of global eq
tion of motion of the entire beam is achieved using Lagrang
multiplier method. The natural frequencies and mode shapes
subsequently reduced with the help of linear transformations t
standard eigenvalue problem for which a set of natural frequ
cies and mode shapes may be easily obtained. Numerical re
for an overhung stepped beam consisting of three uniform s
ments are obtained and presented as an illustrative example.
@S00021-8936~01!00101-5#

1 Introduction
In studying machine tool vibration during a turning cuttin

process, it is often necessary to conduct free-vibration analys
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spinning stepped shaft. Bauer@1# presented an analytical study o
a rotating uniform Euler-Bernoulli beam with various combin
tions of simple boundary conditions. Lee et al.@2# studied the
free vibration of a rotating Rayleigh shaft using the modal ana
sis approach and Galerkin’s method. Katz et al.@3# investigated
the dynamic responses of a uniform rotating shaft subjected
moving load in the axial direction using both Rayleigh and T
moshenko beam theories. Zu and Han@4# presented analytica
solutions for free vibration of a spinning uniform Timoshen
beam with all combinations of the three classical bound
conditions.

In this paper, free vibration of a rotating stepped Timoshen
beam is investigated using the finite element method. To enha
the accuracy of the computed eigenvalues and mode shap
three-node beam element, which permits the use of quintic p
nomials as the interpolation function for both lateral displa
ments and bending angles, is utilized. For each of field varia
six nodal quantities—the variable and its derivative with resp
to the axial coordinate at all three nodes are introduced to
element displacement vector. Two lateral deflections and
bending angles at each axial location need be defined in b
flexural vibration. Therefore, a three-node beam element ha
nodal variables.

Use of the finite element method makes it possible to reduce
free-vibration problem of a spinning beam to a standard eig
value problem for which all eigenvalues and eigenvectors may
determined simultaneously. This is one advantage over the us
an analytical method in which eigenvalues are determined
searching for the roots of a characteristic equation. As an illus
tive example, natural frequencies of an overhung stepped are
tained for several different spin rates.

2 Mathematical Procedure
In this section, the equations of motion of a stepped beam

circular cross section, as shown in Fig. 1, are presented usin
inertial coordinate system. Parameters defining each segmen
length, diameter, and axial coordinate of the left-most plane.

2.1 Governing Differential Equations for a Substructure.
In modeling the stepped beam, each segment is considered a
structure. Within a substructure, the equations of motion may
written as~@3#!

F FL2 0

0 L2
G ]2

]t2 12VF 0 L1

2L1 0 G ]

]t
1FL0 0

0 L0
G G H ux

cx

uy

cy

J 5H 0
0
0
0
J

(1)

whereux anduy are lateral displacements of the beam centroid
the x andy directions, respectively;cx andcy are angles of rota-
tion of the plane normal to the beam centroid, measured in
xoz and yoz coordinate planes, respectively; the three opera
matrices are defined as

L25FrA 0

0 rI
G , L15F0 0

0 rI
G ,

(2)

L05F 2kGA
]2

]z2 kGA
]

]z

2kGA
]

]z
kGA2EI

]2

]z2

G .

In Eq. ~2!, r is the volume mass density of the beam materialG
is the shear modulus;E is the modulus of elasticity;A is the
cross-sectional area;I is the second moment of area;k is the shear
correction factor~0.9 for solid circular cross section,@4#!; V is the
spin rate.
840 Õ Vol. 67, DECEMBER 2000
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Assume that a uniform segmentk is modeled usingNe,k (k
51,2, . . . ,Ns) three-node beam elements. Within each eleme
the displacement vector$ue%k is related to the nodal displaceme
vector$qe%k by

$ue%k5@Ne~j!#$qe%k ~0<j< l e! (3)

wherej is the local coordinate;Ne(j) is the shape function ma
trix. The equations of motion of a uniform segment in terms of t
nodal coordinate vector may be easily derived using the minim
potential energy principle or the Galerkin principle.

2.2 Assembly of Equations of Motion for the Stepped
Beam. The global equations of motion for the entire beam m
be formulated by enforcing continuity conditions across each
terface between two adjacent substructures. The procedure
lustrated here for a single interface at nodej with z5zj . The four
displacement and four force continuity conditions may be writ
in terms of the nodal displacements as

¦

ux

ux

cx

kx

uy

uy

cy

ky

§

z5z
j
2

53
1 0 0 0 0 0 0 0

0 a 12a 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 b 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 a 12a 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 b

4
35

ux

ux

cx

kx

uy

uy

cy

ky

6
z5z

j
1

5Cj5
ux

ux

cx

kx

uy

uy

cy

ky

6
z5z

j
1

(4)

wherea andb are the shear rigidity ratio and the bending rigidi
ratio, defined as

a5
~kGA!1

~kGA!2
, b5

~EI !1

~EI !2
. (5)

The continuity conditions may be implemented into t
global equations of motion using the Lagrange multiplier meth
~@5#!. The final equations of motion of a stepped beam may
written as

@M #$q̈%1@G#$q̇%1@K #$q%50 (6)

where the global mass, gyroscopic and stiffness matrices for
entire stepped beam may be formulated from the correspon
matrices for substructures and constraint matricesCj . For
example, the global mass matrix for a three-segment step
beam is

Fig. 1 An overhung stepped shaft
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2.3 Boundary Conditions. The global equations of motion
of a stepped beam may be readily modified to account for bou
ary conditions at the ends using the penalty approach. In
paper, an overhung shaft clamped at one end and free at the
is investigated.

3 Standard Eigenvalue Problem
One of the most important tasks in free-vibration analy

is to determine the natural frequencies and mode shapes desc
by a system of homogeneous second-order differential eq
tions and boundary conditions at the ends of a beam. To
lize commercial routines for eigenanalysis, the second-or
system may be replaced by the following equivalent first-or
system

Aẋ5Bx (7)

where coefficient matricesA andB may be obtained from matri
cesM , K , andG.

Natural frequencies and mode shapes of a spinning Timoshe
beam may then be reduced to seekingl andX satisfying

AX5
1

l
BX. (8)

4 Numerical Results
Values of the material and geometric properties of a three s

ment stepped beam under investigation are given in Table
Table 2 provides values of natural frequencies of an overh
three segment stepped beam shown in Fig. 1. Five different
rates are considered. For the case of zero spin rate, natura
quencies have matched pairs. For a nonzero spin rate, ther
two natural frequencies developed around each at-rest value.
is associated with the forward precession mode; the other is a
ciated with the backward precession mode.

Table 1 Material and geometric properties of a stepped spin-
ning beam

Table 2 The first six natural frequencies of an overhung
stepped beam
Copyright © 2Journal of Applied Mechanics
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5 Conclusions
This paper presents a finite element analysis of free vibra

of a spinning stepped Timoshenko beam. Through use of
Lagrange multipliers method, both displacement continuity a
force equilibrium conditions are satisfied at the interfaces
joining substructures. Because of the use of higher-or
beam finite elements for each substructure, highly accurate na
frequencies of a stepped beam of any desired mode may
obtained.
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We conducted three sets of depth-of-penetration experiments
limestone targets and 3.0 caliber-radius-head (CRH), ogive-n
steel rod projectiles. The ogive-nose rod projectiles with leng
to-diameter ratios of ten were machined from 4340 Rc 45 and Aer
Met 100 Rc 53 steel, round stock and had diameters and mas
of 7.1 mm, 0.020 kg; 12.7 mm, 0.117 kg; and 25.4 mm, 0.931
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Powder guns or a two-stage, light-gas gun launched the pro
tiles at normal impacts to striking velocities between 0.4 and
km/s. In addition, we present an analytical penetration equat
that described the target resistance by its density and a stren
parameter determined from depth of penetration versus strik
velocity data.@S0021-8936~01!00201-X#

Introduction
Several authors have written review articles that discuss

many analytical, computational, and experimental methods u
to study the broad field of penetration mechanics~@1–5#!. The
responses of the projectiles and targets depend strongly on
problem geometry, materials, and impact conditions. Beca
many penetration mechanisms are possible, experimental obs
tions usually precede and guide analytical or computational m
els. For this study, post-test observations showed a conical e
crater with a depth of two or more projectile diameters follow
by a circular penetration channel or tunnel with nearly the proj
tile diameter. For recent penetration studies with 6061-T6511
minum targets~@6,7#! we could obtain post-test radiographs of t
penetration channels. However, we could obtain post-test ob
vations of the limestone penetration channels only after the tar
were split with the techniques used by stone masons. The pro
tiles recovered from the targets had small mass losses cause
abrasion, but the overall nose shapes before and after penetr
looked very similar. We previously observed similar post-test,
get channels and abraded projectiles with our studies on con
targets~@8,9#!. However, the concrete targets abraded the nose
more severely than the limestone targets.

Based on penetration data sets with three projectile scales
present an analytical penetration equation that describes targ
sistance by a parameter determined from penetration depth ve
striking velocity data. Our limestone penetration equation is si
lar to that previously derived for concrete targets~@10#!. However,
for limestone targets, we observed a noticeable decrease in
target resistance parameter as the projectile diameters incre
So for the limestone targets, the target resistance paramet
equal to a constant term plus a term that depends on the proje
diameter. We hypothesize that the penetration equation will
reasonably accurate for larger scale projectiles, but data f
much more expensive field tests must be obtained to confirm
hypothesis.

The limestone targets were quarried and cut by the Elliot St
Company.1 In the rock mechanics literature, this particular lim
stone is often called Salem, Indiana, or Bedford limestone.
this study, we conducted unconfined compression tests and s
triaxial compression tests on samples cored from represent
blocks and from individual targets before the penetration te
Material properties from our targets are nearly the same as t
reported by Fossum, Senseny, Pfeifle, and Mellegard@11#.

As previously mentioned, our penetration equation contain
target strength constant that is determined from penetration d
versus striking velocity data. While this methodology provides
accurate and convenient engineering equation, the detailed
sponse mechanisms for the target are not modeled. The au
are not aware of any rigorous target models for rock penetra
problems, but Lagrangian computational models that use adap
meshing techniques have shown promise for brittle ceramic
gets~@12,13#!. Detailed computational approaches that model t
get responses also require a broad array of quasi-static and
namic material properties data. For limestone, examples of s
materials experiments and data include~1! quasi-static, triaxial
compression experiments~@11#!, ~2! split Hopkinson bar experi-
ments~@14–16#!, ~3! shock wave studies~@17#!, ~4! dynamic ten-
sile failure with planar-impact techniques~@18,19#!, and ~5!

1Elliot Stone Company, 3326 Mitchell Road, Bedford, IN 47421.
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compression-shear loading with plate impact experiments~@20#!.
Data from other experimental techniques may also be required
a careful target analysis.

In the next sections, we present the penetration model, desc
the experiments, and present our results and conclusions.

Penetration Model
For both limestone and concrete targets, post-test observa

showed a conical entry crater with a depth of two or more proj
tile diameters followed by a circular channel or tunnel with nea
the projectile diameter. The limestone penetration equations
similar to the previously published concrete penetration equatio
From Forrestal, Altman, Cargile, and Hanchak@10#, depth of pen-
etration P for an ogive-nose projectile and a concrete target
given by

P5
m

2pa2rN
lnS 11

NrV1
2

R D 14a, P.4a (1a)

N5
8c21

24c2 , V1
25

mVs
224pa3R

m14pa3Nr
(1b)

in which the ogive-nose rod projectile is described by massm,
shank radiusa, and caliber-radius-headc. The target is described
by densityr and the target strength constantR. The strength con-
stant is determined from

R5
NrVs

2

S 11
4pa3Nr

m DexpF2pa2~P24a!Nr

m G21

(2)

whereVs is striking velocity. For a set of experiments, we hold a
parameters constant and vary striking velocity. From each exp
ment, we measure striking velocityVs and penetration depthP, so
R can be determined from~2! for each experiment. We then tak
the average value ofR from the data set and compare the pred
tion from ~1! with the measured values ofVs andP. For this study
with limestone targets, ogive-nose steel rod projectiles with 7
12.7, and 25.4-mm diameters and a length-to-diameter ratio of
have values ofR5913, 787, and 693 MPa, respectively. Thus, t
target resistance decreases as the projectile shank diamete
creases. We found that for these limestone targets

R5K1k~2ao/2a! (3)

in which K and k are constants obtained from data fits, 2ao is a
reference projectile diameter, and 2a is the projectile diameter.
We show later that withK5607 MPa, k586 MPa, and 2ao
525.4 mm, we accurately recover the measured values ofR for
each of the three data sets.

In summary, the procedure used to calculateR from penetration
depth data for a fixed projectile is the same for concrete or lim
stone targets. However, for limestone targets,R depends on the
projectile shank diameter. Thus, we can use the penetration e
tions ~1a! and ~1b! for limestone whenR is given by~3!.

Experiments
We conducted three sets of penetration experiments~a total of

30 experiments! with ogive-nose steel rod projectiles and lim
stone targets. All projectiles had a total length-to-diameter ra
of ten and 3.0 caliber-radius-head~CRH! nose shapes. The
shank diameters and masses for each of the three sets of ex
ments were 7.1 mm, 0.020 kg; 12.7 mm, 0.117 kg; and 25.4 m
0.931 kg.

Limestone Targets. The limestone targets were quarried a
cut by the Elliot Stone Company of Bedford, IN. We obtained t
targets in three batches from nearby sites. Nominal material p
erties for the three target batches are given in Table 1 and s
minimal variations among the batches. In addition, we conduc
Transactions of the ASME
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Fig. 1 Projectile geometry

Table 1 Nominal material properties for the limestone targets
Journal of Applied Mechanics
several triaxial compression tests~@21,22#! on samples from the
three target batches and found the brittle to ductile transition c
fining pressure to be about 50 MPa.

The 12.7-mm-Diameter, 0.117 kg, 3.0 CRH Projectiles.
Our first set of experiments was conducted with steel proj

tiles machined from 4340Rc 45 ~@23#! round stock. Figure 1
shows the projectile geometry, and for this set of experime
2a512.7 mm, L5106 mm, andl 521 mm. The target impac
surface was 0.51 m square, and the target lengths and other
are given in Table 2. The sides and bottom of the targets w
surrounded by 0.10-m-thick concrete placed between a steel f
and the limestone. Six unconfined compression tests were
ducted with 51-mm-diameter, 108-mm-long samples cored fro
representative limestone block from Batch 1 and the aver
strength wassc f558 MPa.

A 32-mm-diameter powder gun launched the 0.117 kg proj
tiles to the striking velocities recorded in Table 2. An addition
experiment was conducted atVs51605 m/s, but the trajectory wa
Table 2 Penetration data for the 12.7-mm-diameter 4340 Rc 44–45, 0.117 kg, 3.0
CRH projectiles. For ptich and yaw: DÄdown, UÄup, RÄright, LÄleft.

Table 3 Penetration data for the 7.1-mm-diameter 4340 Rc 44–46 or Aer Met 100 Rc 53
„shots 4-1847 and 4-1846 …, 0.0205 kg, 3.0 CRH projectiles. For pitch and yaw: DÄdown,
UÄup, RÄright, LÄleft.

Table 4 Penetration data for the 25.4-mm-diameter 4340 Rc 45–46, 0.931 kg, 3.0 CRH
projectiles. For pitch and yaw: DÄdown, UÄup, RÄright, LÄleft.
DECEMBER 2000, Vol. 67 Õ 843
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curved and the projectile exited the side of the target at a dept
about 0.65 m. The projectiles were fitted with sabots and obt
tors that separated from the projectiles before impact. Four l
diode systems measured striking velocities and orthogonal ra
graphs measured pitch and yaw angles. The target resistanR

Fig. 2 Post-test photographs of the 25.4-mm-diameter
projectiles
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was calculated from~2! for each experiment and recorded
Table 2. The average target resistance parameter for this s
experiments isR5787 MPa.

The 7.1-mm-Diameter 0.020 kg, 3.0 CRH Projectiles. Our
second set of experiments was conducted with steel projec
machined from both 4340Rc 45 and Aer Met 100Rc 53 ~@24#!
round stock. Figure 1 shows the projectile geometry, and for
set of experiments 2a57.11 mm,L559.3 mm, andl 511.8 mm.
A 20-mm-powder gun launched the 0.020 kg projectiles to str
ing velocities of 1230 m/s. For the larger striking velocities r
corded in Table 3, a two-stage 50/20 mm light-gas gun launc
the projectiles. The same target geometries and ballistics mea
ments as those described for the 12.7-mm-diameter 0.117 kg
jectiles were used for this set of experiments.

For this second set of experiments, we performed unconfi
compression tests on two samples cored from the targets.
compressive strengths listed in Table 3 are the average of
unconfined compression tests conducted with 50-mm-diam
108-mm-long cores. In addition, we conducted penetration
periments from both Batch 1 and Batch 3 limestone targets
compare results from the two batches. We show later ne
gible differences in the penetration data from both batches.
average target resistance parameter of this set of experimen
R5913 MPa.

We also conducted an experiment with a 4340Rc 45 projectile
at Vs51649 m/s. That projectile severely bent and turned with
the target. Table 3 shows two experiments conducted with
Met 100Rc 53 projectiles. Shot 4-1846 with a striking velocity o
1674 m/s had a nearly straight trajectory. We then conducted
periments atVs51749, 1826, and 1863 m/s with Aer Met 100Rc
53 projectiles and these projectiles severely bent and tur
within the targets. Piekutowski, Forrestal, Poormon, and War
@7# discusses in detail the better performance of the Aer Met
Rc 53 projectiles.

The 25.4-mm-diameter 0.931 kg, 3.0 CRH Projectiles. Our
third set of experiments was conducted with steel projectiles
Fig. 3 Data and model predictions for the limestone targets
Transactions of the ASME
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chined from 4340Rc 45 round stock. Figure 1 shows the proje
tile geometry, and for this set of experiments 2a525.4 mm, L
5212 mm, andl 542 mm. The target impact surface was 1.02
square and the target lengths are given in Table 4. The sides
bottom of the targets were surrounded by 0.10-m-thick conc
placed between a steel form and the limestone. An 83-mm pow
gun launched the 0.931 kg projectiles to the striking velocit
recorded in Table 4. The same experimental methods used fo
other data sets were also used to obtain the results given in T
4. Data in Table 4 were limited toVs51177 m/s because of th
size and mass of the targets. The average value ofR for this set of
experiments wasR5693 MPa.

Results and Discussion
As previously discussed, post-test target observations for

experiments summarized in Tables 2, 3, and 4 showed a co
entry crater with a depth of two or more projectile diameters f
lowed by a circular penetration tunnel with nearly the projec
diameter. However, we made post-test observations only afte
targets were split with the techniques used by stone masons.
ure 2 shows post-test photographs of the 25.4-mm-diameter
jectiles, and mass losses are given in Table 4. These recov
projectiles lost mass caused by abrasion, but the nose shape
fore and after penetration have similar shapes. Post-test projec
from the other data sets~Tables 2 and 3! had shapes similar to
those shown in Fig. 2.

Figure 3 shows depth of penetrationP versus striking velocity
Vs for the data in Tables 2, 3, and 4. For the model, we use
average value ofR calculated from~2! for the experiments in
each data set. For the 7.1, 12.7, and 25.4-mm-diameter projec
the average target resistance parameter isR5913, 787, and 693
MPa, respectively. For projectile diameters not tested in
study, we recommend~3! be used to calculateR. Equation~3!
with K5607 MPa,k586 MPa, and 2ao525.4 mm accurately re-
cover the measured values ofR from each of the three data set
We hypothesize that the penetration equations~~1! and ~3!!
for this limestone target will be reasonably accurate for lar
scale projectiles, but data from much more expensive field t
with larger diameter projectiles must be obtained to confirm
hypothesis.

Summary
We conducted sets of penetration experiments into limest

targets with three scales of geometrically similar projectiles. T
ogive-nose rod projectiles with a length-to-diameter ratio of
were machined from 4340Rc 45 and Aer Met 100Rc 53 steel,
round stock and had diameters and masses of 7.1 mm, 0.02
12.7 mm, 0.117 kg; and 25.4 mm, 0.931 kg. For the 4340Rc 45
and Aer Met 100Rc 53 steel projectiles, penetration depth i
creased as striking velocity increased to 1500 and 1700 m/s
spectively. For larger striking velocities, the projectiles bent d
ing penetration without nose erosion, deviated from the shot l
and exited the sides of the target or turned severely in the ta

Based on data sets with these three projectile scales, we pr
an analytical penetration equation based on a target strength
rameter that is determined from penetration depth versus stri
velocity data. We show that the target resistance parameter
pends on the projectile shank diameter and present an equ
that describes this diameter dependence. We hypothesize tha
penetration equations for this limestone target will give accur
predictions for larger scale projectile, but data from much m
expensive field tests with larger diameter projectiles must be
tained to confirm our hypothesis.
Journal of Applied Mechanics
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1 Introduction
With an increasingly wide application media in engineering,

study on the crack problem in piezoelectric media has rece
much interest. In this paper, we apply the theory of linear pie
electricity to the electroelastic problem of a finite eccentric cra
off the center line in a piezoelectric ceramic strip under antipla
shear loading. The continuous crack boundary condition
adopted. By using integral transform techniques, the problem
reduced to the solution of a Fredholm integral equation of
second kind, which is obtained from two pairs of dual integ
equations. Numerical results for the energy release rate are sh
graphically.

2 Problem Statement and Method of Solution
Consider a piezoelectric medium in the form of an infinite

long strip containing a finite eccentric crack off the center li
parallel to the edges subjected to the combined antiplane mec
cal and in-plane electric loads. A set of Cartesian coordina
(x,y,z) is attached to the center of the crack. The total thickn
of the strip is 2h(5h11h2), whereh1(5h2e) is the distance
between the top surface of the strip and the crack plane
h2(5h1e) is that between the bottom surface of the strip a
the crack plane.e denotes the distance from the center line of t
strip to the crack plane. The crack is situated along the virt
interface (2a<x<a, y50). Because of the assumed symme
in geometry and loading, it is sufficient to consider the probl
for 0<x,` only. Antiplane governing equations are simplifie
to

c44¹
2w~ i !1e15¹

2f~ i !50, (1)

e15¹
2w~ i !2d11¹

2f~ i !50, (2)

where ¹25]2/]x21]2/]y2 is the two-dimensional Laplace op
erator, w( i ), f ( i ) ( i 51,2), c44, d11, and e15 are the out-of-
plane displacement, the electric potential, the elastic mod
measured in a constant electric field, the dielectric permittiv
measured at a constant strain, and the piezoelectric cons
respectively. Superscripti ( i 51,2) stands for upper and lowe
regions, respectively. The boundary conditions are written
follows:

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
19, 2000; final revision, Apr. 20, 2000. Associate Technical Editor: D. Kouris.
846 Õ Vol. 67, DECEMBER 2000 Copyright ©
ol,

he
ved
o-
ck
ne
is
is

he
al
own

ly
e
ani-
tes
ss

and
nd
he
ual
ry
m
d

-

lus
ity
tant,
r
as

syz
~ i !~x,0!50, ~0<x,a!, (3)

w~1!~x,01!5w~2!~x,02!, ~a<x,`!, (4)

Dy
~1!~x,01!5Dy

~2!~x,02!, ~0<x,a!, (5)

Ex
~1!~x,01!5Ex

~2!~x,02!, ~0<x,a!, (6)

f~1!~x,01!5f~2!~x,02!, ~a<x,`!, (7)

syz
~1!~x,01!5syz

~2!~x,02! ~a<x,`!,
(8)

Dy
~1!~x,01!5Dy

~2!~x,02!, ~a<x,`!.

Case 1: syz
~1!~x,h1!5syz

~2!~x,2h2!5t0 ,
(9)

Dy
~1!~x,h1!5Dy

~2!~x,2h2!5D0 ,

Case 2: gyz
~1!~x,h1!5gyz

~2!~x,2h2!5g0 ,
(10)

Ey
~1!~x,h1!5Ey

~2!~x,2h2!5E0 ,

Case 3: syz
~1!~x,h1!5syz

~2!~x,2h2!5t0 ,
(11)

Ey
~1!~x,h1!5Ey

~2!~x,2h2!5E0 ,

Case 4: gyz
~1!~x,h1!5gyz

~2!~x,2h2!5g0 ,
(12)

Dy
~1!~x,h1!5Dy

~2!~x,2h2!5D0 ,

wheresyz
( i ) , gyz

( i ) , Dy
( i ) , andEj

( i ) ( j 5x,y) are the shear stress, th
shear strain, the electric displacements, and the electric fie
respectively, andt0 , D0 , g0 , andE0 are a uniform shear stress
displacement, shear strain, and electric field, respectively. A F
rier transform is applied to Eqs.~1! and ~2!, and the results are

w~ i !~x,y!5
2

p E
0

`

$A1
~ i !~s!cosh~sy!1A2

~ i !~s!sinh~sy!%

3cos~sx!ds1a0y, (13)

f~ i !~x,y!5
2

p E
0

`

$B1
~ i !~s!cosh~sy!1B2

~ i !~s!sinh~sy!%

3cos~sx!ds2b0y, (14)

whereAj
( i ) , Bj

( i ) ( j 51,2) are the unknowns to be solved.a0 ,b0
are real constants, which will be determined from the edge lo
ing conditions. Applying Eqs.~8!–~12!, and considering Eqs.~3!–
~7!, we obtain the following two simultaneous dual integral equ
tions:

E
0

`

sF~s!FMA~s!1
e15

c44
MB~s!Gcos~sx!ds5

p

2

c0

c44
,

~0<x,a!,
(15)

E
0

`

MA~s!cos~sx!ds50, ~a<x,`!,

E
0

`

sMB~s!sin~sx!ds50, ~0<x,a!,

(16)

E
0

`

MB~s!cos~sx!ds50, ~a<x,`!,

where

2MA~s!5A1
~1!~s!2A1

~2!~s!, 2MB~s!5B1
~1!~s!2B1

~2!~s!, (17)

F~s!5tanh~sh!2
2 sinh2~se!

sinh~2sh!
, (18)n.
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c05c44a02e15b0 , (19)

5t0 , Cases 1 and 3, (20a)

5c44g02e15E0 , Case 2, (20b)

5
~c44d111e15

2 !g02e15D0

d11
, Case 4. (20c)

To solve the two sets of dual integral equations, we defi
MA(s) andMB(s) as follows:

MA~s![
p

2

c0a2

c44
E

0

1

AjC~j!J0~saj!dj,

(21)

MB~s![E
0

1

AjF~j!J0~saj!dj,

whereJ0(saj) is the zero-order Bessel function of the first kin
Inserting Eq. ~21! into Eqs. ~15! and ~16!, we can find that
F~j!50 andC~j! is given by a Fredholm integral equation of th
second kind in the form

C~j!1E
0

1

K~j,h!C~h!dh5Aj, (22)

where

K~j,h!5AjhE
0

`

s$F~s/a!21%J0~sh!J0~sj!ds. (23)

Extending the traditional concept of stress intensity factor
other field variables~@1#!, we have

KT5c0ApaC~1!, KS5KT/c44, KD5e15K
T/c44, KE50,

(24)

whereKT, KS, KD, andKE are stress intensity, strain intensit
electric displacement intensity, and electric field intensity fac
respectively. Evaluating the energy release rateG obtained by Pak
@1#, we obtain

G5
KTKS2KDKE

2
5

pa

2c44
c0

2C2~1!. (25)

3 Numerical Results and Discussion
From Eq.~24!, it is noted that the uniform electric load has n

influence on the field singularities, and the electric displacem
intensity factor depends on the material constants and the ap
mechanical load,t0 but not on the applied electric loads,D0 and
E0 . The results coincide with the ones of Kwon and Lee@2# and
Gao and Fan@3#. Figure 1 displays the normalized energy relea
rate G/G` versus thea/h with various e/h values.G/G` in-
creases with increase of thea/h and e/h ratios. The normalized
energy release rateG/Gcr of a PZT-5H ceramic is shown in Fig
2 with the variation of the applied electric fieldE0 and thea/h
ratio for a crack length of 2a50.02 m andg059.531025 ~Case
2! in cases ofe/h50.0 ande/h50.5. As the magnitude of electri
field increases from zero,G increases or decreases according
the direction of the load. But once the minimum value ofG is
reached, further increase of the electrical load increaseG continu-
ously. G increase with increase of thee/h ratio. It can be shown
that similar results are obtained in Case 4.

4 Conclusions
The normalized energy release rate increases when thea/h and

e/h ratios increase. The energy release rate is dependent o
electric loading only under constant strain loading and indep
dent of it under constant stress loading. In constant strain lo
ings, the minimum normalized energy release rate can exist
the variation of electrical load but has always positive values.
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